For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used ...For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.展开更多
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)+1 种基金the Natural Science Foundation of Zhejiang Province(LQ15F030006)the Educational Commission Research Program of Zhejiang Province(Y201431412)
文摘For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process.