The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by...The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by loess layer and red clay layer in Yushuwan Coal Mine, and the water reaction property of clay and loess of aquiclude was tested by soil mechanics method. The permeability coefficient of the loess is 0.856 m/d and the clay is 0.434 m/d. The dilatability coefficient of the loess is 16.1% and the clay is 14.6%. Through physical solid-liquid simulation with whole stress-stain similarity, the distribution of "downward crack zone" and "upward crack zone" was found to be the major factor of aquiclude stability. The downward crack closing length is about 30% of the downward crack length. The expanding of clay and loess with water are principal factors of downward crack closing. At last, the mechanical model of downward crack closing was constructed, and the criterion of crack closing was put forward at all. This work will provides the theoretical base for aquiclude stability research and safety mining in shallow seam.展开更多
The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper...The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper, we study the physical origins of these ruled surfaces for bosonic systems. The emergence of ruled surfaces was recently proposed as signatures of symmetry- breaking phase. We show that, apart from being signatures of symmetry-brealdng, ruled surfaces can also be the consequence of gapless quantum systems by demonstrating an explicit example in terms of a two-mode Ising model. Our analysis was largely simplified by the quantum de Finetti's theorem--in the limit of large system size, these RDMs are the convex set of all the symmetric separable states. To distinguish ruled surfaces originated from gapless systems from those caused by symmetry- breaking, we propose to use the finite size scaling method for the corresponding geometry. This method is then applied to the two-mode XY model, successfully identifying a ruled surface as the consequence of gapless systems.展开更多
文摘The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by loess layer and red clay layer in Yushuwan Coal Mine, and the water reaction property of clay and loess of aquiclude was tested by soil mechanics method. The permeability coefficient of the loess is 0.856 m/d and the clay is 0.434 m/d. The dilatability coefficient of the loess is 16.1% and the clay is 14.6%. Through physical solid-liquid simulation with whole stress-stain similarity, the distribution of "downward crack zone" and "upward crack zone" was found to be the major factor of aquiclude stability. The downward crack closing length is about 30% of the downward crack length. The expanding of clay and loess with water are principal factors of downward crack closing. At last, the mechanical model of downward crack closing was constructed, and the criterion of crack closing was put forward at all. This work will provides the theoretical base for aquiclude stability research and safety mining in shallow seam.
基金supported by the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the Perimeter Institute for Theoretical PhysicsResearch at Perimeter Institute was supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation+1 种基金Zheng-Xin Liu was supported by the Research Funds of Remin University of China (Grant No. 15XNFL19)the National Natural Science Foundation of China (Grant No. 11574392)
文摘The reduced density matrices (RDMs) of many-body quantum states form a convex set. The boundary of low dimensional projections of this convex set may exhibit nontrivial geometry such as ruled surfaces. In this paper, we study the physical origins of these ruled surfaces for bosonic systems. The emergence of ruled surfaces was recently proposed as signatures of symmetry- breaking phase. We show that, apart from being signatures of symmetry-brealdng, ruled surfaces can also be the consequence of gapless quantum systems by demonstrating an explicit example in terms of a two-mode Ising model. Our analysis was largely simplified by the quantum de Finetti's theorem--in the limit of large system size, these RDMs are the convex set of all the symmetric separable states. To distinguish ruled surfaces originated from gapless systems from those caused by symmetry- breaking, we propose to use the finite size scaling method for the corresponding geometry. This method is then applied to the two-mode XY model, successfully identifying a ruled surface as the consequence of gapless systems.