期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进级联卷积神经网络的织物疵点检测
1
作者 李小庆 张俊杰 +2 位作者 杜小勤 梁晶 袁桦 《计算机与数字工程》 2024年第5期1557-1562,1568,共7页
为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方... 为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方法,同时引入复制粘贴以及混合的方式对样本进行扩充与增强;针对特征提取算法提取特征不精确的问题,对特征金字塔进行改进,通过加入可变形卷积、递归特征金字塔、可切换的空洞卷积、全局语义信息的方法扩大感受野、增强语义信息。实验结果验证了算法的有效性,该算法对天池雪浪制造数据集9种布匹疵点进行检测,检测是否具有瑕疵的准确率达到97%以上,疵点定位的平均检测精度为56.7%,样本检测效率为2.4 FPS。相对于基础模型定位精准度提升了10%以上,并且检测效果满足工业上的生产需求。 展开更多
关键词 织物疵点检测 级联卷积神经网络 数据增广 递归特征金字塔 可切换空洞卷积
下载PDF
基于层间融合的神经网络访存密集型层加速 被引量:1
2
作者 杨灿 王重熙 章隆兵 《高技术通讯》 CAS 2023年第8期823-835,共13页
近年来,随着深度神经网络在各领域的广泛应用,针对不同的应用场景,都需要对神经网络模型进行训练以获得更优的参数,于是对训练速度的需求不断提升。然而,现有的研究通常只关注了计算密集型层的加速,忽略了访存密集型层的加速。访存密集... 近年来,随着深度神经网络在各领域的广泛应用,针对不同的应用场景,都需要对神经网络模型进行训练以获得更优的参数,于是对训练速度的需求不断提升。然而,现有的研究通常只关注了计算密集型层的加速,忽略了访存密集型层的加速。访存密集型层的操作主要由访存带宽决定执行效率,单独提升运算速度对性能影响不大。本文从执行顺序的角度出发,提出了将访存密集型层与其前后的计算密集型层融合为一个新层执行的方式,将访存密集型层的操作作为对融合新层中输入数据的前处理或输出数据的后处理进行,大幅减少了访存密集型层在训练过程中对片外内存的访问,提升了性能;并针对该融合执行方案,设计实现了一个面向训练的加速器,采用了暂存前处理结果、后处理操作与计算密集型层操作并行执行的优化策略,进一步提升了融合新层的训练性能。实验结果显示,在面积增加6.4%、功耗增加10.3%的开销下,训练的前向阶段、反向阶段的性能分别实现了67.7%、77.6%的提升。 展开更多
关键词 神经网络 训练 加速器 卷积神经网络(CNN) 访存密集型 批归一化(BN)层
下载PDF
基于改进级联卷积神经网络的交通标志识别 被引量:8
3
作者 王海 王宽 +2 位作者 蔡英凤 刘泽 陈龙 《汽车工程》 EI CSCD 北大核心 2020年第9期1256-1262,1269,共8页
自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改... 自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改进了目标检测任务中的评价指标IoU,引入目标检测任务的直接评价指标GIoU指导定位任务,提高了检测精度。最后,算法在德国交通标志数据集GTSDB下进行了实验验证,以ResNet101为基础特征提取网络,mAP可达98.8%,实验结果表明了所提算法的有效性,具有优越的工程实用价值。 展开更多
关键词 交通标志检测 深度学习 卷积神经网络 级联RCNN
下载PDF
基于级联卷积神经网络的复杂花色布匹瑕疵检测算法 被引量:11
4
作者 孟志青 邱健数 《模式识别与人工智能》 EI CSCD 北大核心 2020年第12期1135-1144,共10页
当布匹的背景信息复杂多变时,复杂花色布匹的瑕疵定位与分类较为困难.针对这一问题,文中提出基于级联卷积神经网络的复杂花色布匹瑕疵检测算法.首先,使用双路残差的骨干特征提取网络,在缺陷图和模板图上提取并融合特征.然后,设计密度聚... 当布匹的背景信息复杂多变时,复杂花色布匹的瑕疵定位与分类较为困难.针对这一问题,文中提出基于级联卷积神经网络的复杂花色布匹瑕疵检测算法.首先,使用双路残差的骨干特征提取网络,在缺陷图和模板图上提取并融合特征.然后,设计密度聚类边框生产器,指导框架中区域候选网络的预检测框设计.最后,通过级联回归方法完成瑕疵的精确定位和分类.采用工业现场采集的布匹图像数据进行训练与预测,结果表明,文中算法的精准率和召回率较高. 展开更多
关键词 布匹瑕疵检测 级联卷积神经网络 目标检测 瑕疵分类
下载PDF
基于级联卷积神经网络的手势特征提取方法 被引量:2
5
作者 陈金龙 瞿元昊 +3 位作者 杨明浩 强保华 唐仁俊 朱庆杰 《计算机应用》 CSCD 北大核心 2020年第S01期74-79,共6页
针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角... 针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角度参数作为手势参数的全局参数,进行划分和特征提取;然后,将手指角度参数作为局部参数,进行特征提取。为解决局部参数特征提取网络数量过多的问题,减少神经网络的数量和节约训练网络所需的时间与内存开销,采用多分支结构的神经网络模型,将五个手指的局部特征提取网络集成为一个整体。实验结果表明,所提方法在真实训练集上平均分类准确率达到95.13%,测试集平均准确率达到54%,测试集准确率相较于全卷积神经网络的算法提高了4.76个百分点。 展开更多
关键词 手势主方向 特征提取 多分支结构 级联卷积神经网络 手势数据集
下载PDF
一种改进的多任务级联卷积神经网络人脸检测算法 被引量:5
6
作者 李艳灵 王莎莎 杨志鹏 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2022年第4期651-655,共5页
多任务级联的卷积神经网络(Multi-task Convolutional Neural Network,MTCNN)人脸检测算法因兼顾了检测的速度与准确率经常被用在一些人脸识别任务上,但是面对一些复杂的人脸检测任务,该网络检测的实时性与准确性仍然达不到实际要求。... 多任务级联的卷积神经网络(Multi-task Convolutional Neural Network,MTCNN)人脸检测算法因兼顾了检测的速度与准确率经常被用在一些人脸识别任务上,但是面对一些复杂的人脸检测任务,该网络检测的实时性与准确性仍然达不到实际要求。为解决这一问题,提出了一种改进的多任务级联卷积神经网络人脸检测算法。该方法对MTCNN中的R-Net和O-Net模块进行了改进,将这两个网络模块的NMS算法优化成Better-NMS算法,即重新对图像候选框的分类置信度进行修改,避免了对于IOU大于预设阈值的人脸候选框的漏检。在WIDER Face和FDDB数据集上,将所提出的改进的级联卷积神经网络人脸检测算法及其他对比算法进行了训练与评测。实验结果表明:该改进算法能在人脸检测过程中更好地排除冗余的候选框,保留精准度更高的回归窗口,可以在不损耗其鲁棒性的同时提高了人脸检测的准确率。 展开更多
关键词 级联卷积神经网络 非极大值抑制 人脸检测 算法
下载PDF
基于级联卷积神经网络的前列腺磁共振图像分类 被引量:10
7
作者 刘可文 刘紫龙 +4 位作者 汪香玉 陈黎 李钊 吴光耀 刘朝阳 《波谱学杂志》 CAS 北大核心 2020年第2期152-161,共10页
针对深度学习训练成本高,以及基于磁共振图像的前列腺癌临床诊断需要大量医学常识且极为耗时的问题,本文提出了一种基于级联卷积神经网络(Convolutional Neural Network,CNN)和磁共振图像的前列腺癌(Prostate Cancer,PCa)自动分类诊断方... 针对深度学习训练成本高,以及基于磁共振图像的前列腺癌临床诊断需要大量医学常识且极为耗时的问题,本文提出了一种基于级联卷积神经网络(Convolutional Neural Network,CNN)和磁共振图像的前列腺癌(Prostate Cancer,PCa)自动分类诊断方法,该网络以Faster-RCNN作为前网络,对前列腺区域进行提取分割,用于排除前列腺附近组织器官的干扰;以基于ResNet改进的网络结构CNN40bottleneck作为后网络,用于对前列腺区域病变进行分类.后网络由瓶颈结构串联组成,其中使用批量标准化(Batch Normalization,BN)、全局平均池化(Global Average Pooling,GAP)进行优化.实验结果证明,本文方法对前列腺癌诊断结果较好,而且缩减了训练时间和参数量,有效降低了训练成本. 展开更多
关键词 磁共振成像(MRI) 级联卷积神经网络(Cascaded CNN) 前列腺癌(PCa) 分类
下载PDF
基于优化多任务级联卷积神经网络的多人目标侦测 被引量:3
8
作者 陈英 李志勇 《传感器与微系统》 CSCD 北大核心 2022年第7期118-121,共4页
针对多人目标侦测识别的速度问题,提出了一种优化的多任务级联卷积神经网络(OMTCCNN)。首先,对CelebA数据集进行增样处理;其次,对MTCCNN进行关键点的回归,同时加入Dropout抑制部分神经元,加速侦测时间;最后,通过Arc-SoftMax增大类间距,... 针对多人目标侦测识别的速度问题,提出了一种优化的多任务级联卷积神经网络(OMTCCNN)。首先,对CelebA数据集进行增样处理;其次,对MTCCNN进行关键点的回归,同时加入Dropout抑制部分神经元,加速侦测时间;最后,通过Arc-SoftMax增大类间距,优化SoftMax分类效果。基于召回率、精确率和运行时间等评价指标的对比,结果表明:优化后的OMTCCNN时间上略有提升,人脸识别在Arc-SoftMax上的分类效果明显,可以用于小范围多人目标侦测。 展开更多
关键词 多人目标侦测 多任务级联 卷积神经网络
下载PDF
基于级联卷积神经网络的绝缘子缺陷识别 被引量:3
9
作者 卢锦玲 黄鼎越 艾洲 《电力科学与工程》 2022年第6期25-34,共10页
针对航拍图像绝缘子缺陷检测速度慢且易出现误判的问题,提出一种基于级联卷积神经网络的绝缘子缺陷识别方法。该方法将缺陷识别问题转换成了二级目标检测问题。为便于快速获取输入图像的深层特征,使用了深度可分离卷积和减少卷积层的方... 针对航拍图像绝缘子缺陷检测速度慢且易出现误判的问题,提出一种基于级联卷积神经网络的绝缘子缺陷识别方法。该方法将缺陷识别问题转换成了二级目标检测问题。为便于快速获取输入图像的深层特征,使用了深度可分离卷积和减少卷积层的方式对YOLOV3目标检测算法进行了轻量级的优化。另外,通过倒残差结构和RFB(receptive field block)模块设计,提高了网络检测性能。实验结果表明,所提出的算法在缺陷识别的速度和准确度方面都有明显的提升。 展开更多
关键词 输电线路巡检 绝缘子 缺陷识别 卷积神经网络 级联 倒残差
下载PDF
一种改进的多任务级联卷积神经网络人脸检测算法 被引量:3
10
作者 刘彩云 李雅雯 刘倩 《长江大学学报(自然科学版)》 2021年第6期111-118,共8页
人脸识别是人工智能的重要应用领域之一,人脸检测是人脸识别的关键步骤。由于姿势变化、外物遮挡以及光源方向等多方面因素的影响,人脸检测的准确率不高,并且对于多人图片,往往很难准确地识别出所有人脸。提出了一种改进的多任务级联卷... 人脸识别是人工智能的重要应用领域之一,人脸检测是人脸识别的关键步骤。由于姿势变化、外物遮挡以及光源方向等多方面因素的影响,人脸检测的准确率不高,并且对于多人图片,往往很难准确地识别出所有人脸。提出了一种改进的多任务级联卷积神经网络的人脸检测算法(IMTCNN):对R-Net层网络集成图片信息卷积残差模块,通过扩大特征图的感受野来获取更多人脸信息,以提升R-Net层网络对人脸目标的检测鲁棒性,并且通过加入反卷积层和最大池化层解决特征融合时维度不一致问题;对O-Net层网络集成图片信息卷积残差模块,进一步提升对多人图片的人脸检测性能,降低人脸检测过程中受外部条件影响产生的误差,同时添加2个卷积池化层使特征融合时维度一致。通过改进R-Net层和O-Net层集成图片信息卷积残差模块,扩大特征图的感受野,对图片进行人脸候选框定、选区筛选以及人脸关键点定位,最终实现人脸检测。试验结果表明,该算法速度快,准确性高,并且可以一次性检测多张人脸,为后续人脸识别打下了良好的基础。 展开更多
关键词 级联卷积神经网络 图片信息卷积残差模块 P-Net层 R-Net层 O-Net层 人脸检测 人脸关键点 定位
下载PDF
级联卷积神经网络的遥感影像飞机目标检测 被引量:23
11
作者 余东行 郭海涛 +2 位作者 张保明 赵传 卢俊 《测绘学报》 EI CSCD 北大核心 2019年第8期1046-1058,共13页
传统遥感影像飞机目标检测算法依赖于人工设计特征,对大范围复杂场景和多尺度的飞机目标稳健性较差,基于深层卷积神经网络的目标检测算法通常难以有效应对大幅影像的目标搜索和弱小目标检测问题,针对上述问题,本文提出了一种基于级联卷... 传统遥感影像飞机目标检测算法依赖于人工设计特征,对大范围复杂场景和多尺度的飞机目标稳健性较差,基于深层卷积神经网络的目标检测算法通常难以有效应对大幅影像的目标搜索和弱小目标检测问题,针对上述问题,本文提出了一种基于级联卷积神经网络的遥感影像飞机目标检测算法。首先根据全卷积神经网络能够支持输入任意大小图像的特点,采用小尺度浅层全卷积神经网络对整幅影像进行遍历和搜索,快速获取疑似飞机目标作为兴趣区域,然后利用较深层的卷积神经网络对兴趣区域进行更精确的目标分类与定位。为提高卷积神经网络对地物目标的辨识能力,在卷积层中引入多层感知器,并在训练过程中采取多任务学习与离线难分样本挖掘的策略;在测试阶段,建立影像金字塔进行多级搜索,并结合非极大值抑制消除冗余窗口,从而实现由粗到精的飞机目标检测与识别。对多个数据集下多种复杂场景的遥感影像进行测试,结果表明,本文方法具有较高的准确性和较强的稳健性,可为大幅遥感影像的飞机目标检测问题提供一个快速高效的解决方案。 展开更多
关键词 飞机检测 遥感影像 级联卷积神经网络 难分样本挖掘 深度学习
下载PDF
基于级联卷积神经网络的人脸检测算法 被引量:17
12
作者 孙康 李千目 李德强 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第1期40-47,共8页
为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法。首先通过融合全脸与部分人脸的... 为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法。首先通过融合全脸与部分人脸的全卷积神经网络置信图谱快速定位人脸候选区域,然后采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精确度。所提出的方法与一些代表性的算法对比和分析,在FDDB、AFW权威评测集上达到了可比较的精度,且能快速地进行检测。 展开更多
关键词 人脸检测 级联结构 神经网络 卷积网络 无约束条件
下载PDF
尺度无关的级联卷积神经网络人脸检测算法 被引量:6
13
作者 郑成浩 刘兵 周勇 《计算机应用研究》 CSCD 北大核心 2019年第2期593-597,605,共6页
卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神... 卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法。该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测。同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择。在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测性能,并降低了检测人脸的时间。 展开更多
关键词 级联卷积神经网络 空间金字塔池化 人脸检测
下载PDF
基于级联卷积神经网络的图像篡改检测算法 被引量:9
14
作者 毕秀丽 魏杨 +2 位作者 肖斌 李伟生 马建峰 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2987-2994,共8页
基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然... 基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然可以学习更高级的语义信息,但检测定位篡改区域效果并不理想。该文提出一种基于级联卷积神经网络的图像篡改检测算法,在卷积神经网络所展示出来的普遍特性的基础上进一步探究其深层次的特性,利用浅层稀神经元的级联网络结构弥补以往深层多神经元的单一网络结构在图像篡改检测中的缺陷。该文提出的检测算法由级联卷积神经网络和自适应筛选后处理两部分组成,级联卷积神经网络实现分级式的篡改区域定位,自适应筛选后处理对级联卷积神经网络的检测结果进行优化。通过实验对比,该文算法展示了较好的检测效果,且具有较高的鲁棒性。 展开更多
关键词 图像篡改检测 级联卷积神经网络 浅层稀神经 级联网络结构 自适应筛选后处理
下载PDF
基于级联卷积神经网络的荧光免疫层析图像峰值点定位方法研究 被引量:3
15
作者 张栋 杜康 +2 位作者 韩文念 李秀梅 汪曣 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第1期217-227,共11页
针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标检测的级联卷积神经网络(CNN)算法。第一层级联算法首先使用经改进的AlexNet算法对荧光免疫层析定量图像中包含质控(C)峰和检测... 针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标检测的级联卷积神经网络(CNN)算法。第一层级联算法首先使用经改进的AlexNet算法对荧光免疫层析定量图像中包含质控(C)峰和检测(T)峰的区域进行检测和提取。之后将提取到的图像区域送入第二层级联卷积神经网络中,对C峰和T峰的位置进行快速定位。随后将定位结果输入到第三层级联卷积神经网络中,对上一层输出的C峰和T峰的定位结果进行精准微调。最后输出C峰和T峰的准确定位信息。实验结果表明,提出的级联卷积神经网络算法,对荧光免疫层析图像峰值点的平均定位准确度达到了96%以上,提高了峰值点的定位准确度。 展开更多
关键词 荧光免疫层析 目标检测 峰值点定位 级联卷积神经网络
下载PDF
基于级联卷积神经网络的彩色图像三维手势估计 被引量:1
16
作者 刘玮 戴仕明 +2 位作者 杨文姬 杨红云 钱文彬 《小型微型计算机系统》 CSCD 北大核心 2020年第3期558-563,共6页
估计手的三维姿态是人机交互中重要的组成部分.针对从单个彩色图像估计准确的三维手势困难这一问题,提出了一种基于级联卷积神经网络的估计方法,该级联网络分三阶段,手部掩膜估计、二维手势估计和三维手势估计,三阶段级联网络进行端到... 估计手的三维姿态是人机交互中重要的组成部分.针对从单个彩色图像估计准确的三维手势困难这一问题,提出了一种基于级联卷积神经网络的估计方法,该级联网络分三阶段,手部掩膜估计、二维手势估计和三维手势估计,三阶段级联网络进行端到端的训练,可以实现相互促进,最终优化三维手势估计的准确性.在两个公共数据集上进行了实验,实验结果表明该级联网络产生了卓越的三维手势估计精度,验证了该级联网络的有效性. 展开更多
关键词 级联卷积神经网络 手势估计 三维手姿态 彩色图像
下载PDF
基于级联卷积神经网络的作物病害叶片分割 被引量:10
17
作者 王振 张善文 赵保平 《计算机工程与应用》 CSCD 北大核心 2020年第15期242-250,共9页
针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG1... 针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG16模型构建区域病斑检测网络(Regional Detection Network,RD-net),利用全局池化层代替全连接层,由此减少模型参数,实现叶片病斑区域精确定位。基于Encoder-Decoder模型结构建立区域分割网络(Regional Segmentation Network,RS-net),并利用多尺度卷积核提高原始卷积核的局部感受野,对病斑区域精确分割。在不同环境下的病害叶片图像上进行分割实验,分割精度为87.04%、召回率为78.31%、综合评价指标值为88.22%、单幅图像分割速度为0.23 s。实验结果表明该方法能够满足不同环境下的作物病害叶片图像分割需求,可为进一步的作物病害识别方法研究提供参考。 展开更多
关键词 卷积神经网络 图像分割 作物病害 级联卷积神经网络
下载PDF
基于级联卷积神经网络的高效目标检测方法 被引量:11
18
作者 宋云博 陈冬艳 +1 位作者 郝赟 付先平 《计算机工程与应用》 CSCD 北大核心 2021年第5期139-145,共7页
目标检测作为计算机视觉的重要研究方向,在智慧城市、无人驾驶等领域的作用越来越重要。传统目标检测算法中,根据交并比(Intersection over Union,IOU)的大小判断正负样本,但较低的IOU会引入噪声,降低检测器的精度;较高的IOU会保留少数... 目标检测作为计算机视觉的重要研究方向,在智慧城市、无人驾驶等领域的作用越来越重要。传统目标检测算法中,根据交并比(Intersection over Union,IOU)的大小判断正负样本,但较低的IOU会引入噪声,降低检测器的精度;较高的IOU会保留少数高质量样本,造成过拟合;并且推荐区域和检测器的IOU阈值相差过大会引起质量不匹配问题。针对上述问题,提出了一种基于级联网络的平行级联检测网络,它由一系列检测器串并联而成,每个检测器设置递增的IOU阈值,从而在每个阶段都会得到一个更高质量的样本分布来训练下一级检测器,并逐步重采样减少过拟合。实验结果表明提出的平行级联检测网络的检测精度优于传统目标检测算法,在目标检测数据集Microsoft COCO上平均准确度(AP)提升了1.5个百分点左右。 展开更多
关键词 卷积神经网络 深度学习 级联网络 高精度目标检测
下载PDF
基于双网络级联卷积神经网络的设计 被引量:7
19
作者 潘兵 曾上游 +2 位作者 杨远飞 周悦 冯燕燕 《电光与控制》 CSCD 北大核心 2019年第2期57-61,共5页
传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特... 传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特征更具有辨别性。双网络级联是采用两条支路进行特征提取,一条支路为传统的CNN,另一条支路为在传统的CNN基础上加上残差操作,在下一次特征图降维前通过级联操作将两条不同的网络支路结合在一起。本网络实验采用101_food和caltech256数据集进行测试,将级联后的网络和两条支路网络进行对比,实验最后表现出较好的结果。 展开更多
关键词 图像识别 卷积神经网络 网络级联 特征图
下载PDF
基于级联深度卷积神经网络的高性能图像超分辨率重构 被引量:3
20
作者 郭晓 谭文安 《计算机应用》 CSCD 北大核心 2017年第11期3124-3127,3144,共5页
为了进一步提高现有图像超分辨率重构方法所得图像的分辨率,提出一种高性能的深度卷积神经网络(HDCN)模型用于重构放大倍数固定的超分辨率图像。通过建立级联HDCN模型解决传统模型重构图像时放大倍数无法按需选择的问题,并在级联过程中... 为了进一步提高现有图像超分辨率重构方法所得图像的分辨率,提出一种高性能的深度卷积神经网络(HDCN)模型用于重构放大倍数固定的超分辨率图像。通过建立级联HDCN模型解决传统模型重构图像时放大倍数无法按需选择的问题,并在级联过程中引入深度边缘滤波器以减少级联误差,突出边缘信息,从而得到高性能的级联深度卷积神经网络(HCDCN)模型。基于Set5、Set14数据集进行超分辨率图像重构实验,证明了引入深度边缘滤波器的有效性,对比HCDCN方法与其他图像超分辨率重构方法的性能评估结果,展现了HCDCN方法的优越性能。 展开更多
关键词 超分辨率 图像重建 深度卷积神经网络 级联 深度边缘滤波器
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部