期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度回归森林的短期电力负荷预测 被引量:3
1
作者 黄文思 陆鑫 +3 位作者 陈婧 林超 薛迎卫 施炜炜 《电气自动化》 2023年第1期18-20,25,共4页
为减轻深度学习算法对于网络超参数的依赖,提出了基于深度回归森林的短期电力负荷预测方法。所提方法利用深度森林的默认超参数构建多粒度扫描过程和级联森林过程的森林模型。首先,通过多粒度扫描过程有效学习样本的内在特征并提取序列... 为减轻深度学习算法对于网络超参数的依赖,提出了基于深度回归森林的短期电力负荷预测方法。所提方法利用深度森林的默认超参数构建多粒度扫描过程和级联森林过程的森林模型。首先,通过多粒度扫描过程有效学习样本的内在特征并提取序列数据的时序特征;然后,将所有特征向量用作级联森林过程的输入,筛选最终特征向量;最后,利用训练数据的特征对预测样本进行预测。结果表明,所提方法能够有效地减轻超参数配置对深度学习模型的影响,预测结果比较精确。 展开更多
关键词 深度回归森林 短期负荷预测 多粒度扫描过程 级联森林过程 数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部