针对一类具有输入约束和输出噪声的SISO(Single input single output)不确定非线性系统,提出了一种基于误差补偿和工程滤波的抗饱和级联线性自抗扰控制(Linear active disturbance rejection control,LADRC)方法.首先针对高频量测噪声,...针对一类具有输入约束和输出噪声的SISO(Single input single output)不确定非线性系统,提出了一种基于误差补偿和工程滤波的抗饱和级联线性自抗扰控制(Linear active disturbance rejection control,LADRC)方法.首先针对高频量测噪声,分析了线性扩张状态观测器(Linear extended state observer,LESO)对噪声的放大机理及其与观测器增益的定量关系,进而设计了一种基于工程滤波器的级联LADRC方法,在滤除噪声的同时有效补偿了因滤波所造成的输出幅值和相位损失,确保了闭环系统的跟踪精度.然后继续考虑输入饱和的问题,利用LADRC的实时估计/补偿能力,通过将饱和差值信号引入LESO,设计了一种基于误差补偿的抗饱和LADRC方法,有效减小了系统设计控制量,避免了系统长时间陷入饱和.通过实时仿真比较,验证了所提出方法的有效性.展开更多
文摘针对一类具有输入约束和输出噪声的SISO(Single input single output)不确定非线性系统,提出了一种基于误差补偿和工程滤波的抗饱和级联线性自抗扰控制(Linear active disturbance rejection control,LADRC)方法.首先针对高频量测噪声,分析了线性扩张状态观测器(Linear extended state observer,LESO)对噪声的放大机理及其与观测器增益的定量关系,进而设计了一种基于工程滤波器的级联LADRC方法,在滤除噪声的同时有效补偿了因滤波所造成的输出幅值和相位损失,确保了闭环系统的跟踪精度.然后继续考虑输入饱和的问题,利用LADRC的实时估计/补偿能力,通过将饱和差值信号引入LESO,设计了一种基于误差补偿的抗饱和LADRC方法,有效减小了系统设计控制量,避免了系统长时间陷入饱和.通过实时仿真比较,验证了所提出方法的有效性.