A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed...A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.展开更多
Carbon preference index (CPI) of long-chain n-alkanes preserved in surface soil increases gradually from southeastern China to the north margin of Loess Plateau.Along this latitudinal transect,the CPI value correlates...Carbon preference index (CPI) of long-chain n-alkanes preserved in surface soil increases gradually from southeastern China to the north margin of Loess Plateau.Along this latitudinal transect,the CPI value correlates to relative humidity,precipitation,and temperature with a negative linear relationship,respectively,whereas the correlation of CPI to temperature is relatively weak.In the Wuyi,Shennongjia,and Tianshan Mountains,CPI values do not change systemically with altitude increasing (or temperature decreasing).However,mean value of CPI for the individual mountain increases in turn from the humid mountain to the arid.These results jointly suggest that aridity (or humidity) is a dominate climate factor in altering soil CPI value.High CPI values of geological records therefore indicate the arid paleoclimate.Though long-chain n-alkanes in soil are derived mainly from leaf wax of terrestrial vascular plants,the regular latitudinal variations of soil CPI might not be caused by the change of vegetation.We speculate that increased long-chain n-alkanes from microbes and/or enhanced biodegradation in the humid climate lead to the decrease of soil CPI.展开更多
The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the su...The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the surface current deflexion angle is smaller than 45° in the Arctic and high latitude areas while larger than 45° in the low latitude areas.In order to explain these phenomena,a series of idealized numerical experiments are designed to investigate the influence of vertical viscosity coefficients with different vertical distribution characteristics on the classical and steady Ekman spiral structure.Results show that when the vertical viscosity coefficient decreases with water depth,the surface current deflexion angle is larger than 45°,whereas the angle is smaller than 45° when the vertical viscosity coefficient increases with water depth.So the different observed surface current deflexion angles in low latitude sea areas and the Arctic regions should be attributed to the different vertical distribution characteristics of vertical viscosity coefficients in the upper ocean.The flatness of the Ekman spiral is not equal to one and does not show regular behaviors for the numerical experiments with different distribution of vertical viscosity.However,the magnitudes and directions of volume transport of Ekman spirals are almost the same as the results of classical Ekman theory,i.e.,vertical viscosity coefficient distributions have no effect on the magnitudes and directions of volume transport.展开更多
基金supported by Jiangsu Education Science Foundation (Grant No.07KJB170065)Chinese National Science Foundation (Grant No.40775060)U.S.National Science Foundation (Grant No.ATM0758609)
文摘A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.
基金supported jointly by National Natural Science Foundation of China (Grant No. 41103001)Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q1-15,KZCX2-YW-Q1-03)
文摘Carbon preference index (CPI) of long-chain n-alkanes preserved in surface soil increases gradually from southeastern China to the north margin of Loess Plateau.Along this latitudinal transect,the CPI value correlates to relative humidity,precipitation,and temperature with a negative linear relationship,respectively,whereas the correlation of CPI to temperature is relatively weak.In the Wuyi,Shennongjia,and Tianshan Mountains,CPI values do not change systemically with altitude increasing (or temperature decreasing).However,mean value of CPI for the individual mountain increases in turn from the humid mountain to the arid.These results jointly suggest that aridity (or humidity) is a dominate climate factor in altering soil CPI value.High CPI values of geological records therefore indicate the arid paleoclimate.Though long-chain n-alkanes in soil are derived mainly from leaf wax of terrestrial vascular plants,the regular latitudinal variations of soil CPI might not be caused by the change of vegetation.We speculate that increased long-chain n-alkanes from microbes and/or enhanced biodegradation in the humid climate lead to the decrease of soil CPI.
基金supported by the National Natural Science Foundation of China(Grant No.40876015)the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes(Grant No.CHINARE2012-04-04)
文摘The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the surface current deflexion angle is smaller than 45° in the Arctic and high latitude areas while larger than 45° in the low latitude areas.In order to explain these phenomena,a series of idealized numerical experiments are designed to investigate the influence of vertical viscosity coefficients with different vertical distribution characteristics on the classical and steady Ekman spiral structure.Results show that when the vertical viscosity coefficient decreases with water depth,the surface current deflexion angle is larger than 45°,whereas the angle is smaller than 45° when the vertical viscosity coefficient increases with water depth.So the different observed surface current deflexion angles in low latitude sea areas and the Arctic regions should be attributed to the different vertical distribution characteristics of vertical viscosity coefficients in the upper ocean.The flatness of the Ekman spiral is not equal to one and does not show regular behaviors for the numerical experiments with different distribution of vertical viscosity.However,the magnitudes and directions of volume transport of Ekman spirals are almost the same as the results of classical Ekman theory,i.e.,vertical viscosity coefficient distributions have no effect on the magnitudes and directions of volume transport.