The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforeca...The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforecast database,this follow-up study evaluates the extended-range prediction skill of the heatwave event and further unravels the close link between the ISO and extended-range prediction of the event.With a two-week lead time,this heatwave event fails to occur in the reforecast because the predicted surface temperature is signi cantly underesti-mated.More detailed analysis demonstrates that the biases for both the intensity and the location of the warming region are primarily attributable to the inaccurate extratropical intrasea-sonal traveling signals.This work strongly indicates that accurately capturing the extratropical intraseasonal signal from the Eurasian continent is indispensable for extended-range prediction of East Asian extreme heatwave events.展开更多
This paper demonstrates regional characteristics, a long-term decreasing trend, and decadal variations in the frequency of cold surge events based on daily mean temperature and daily minimum temperature data in China&...This paper demonstrates regional characteristics, a long-term decreasing trend, and decadal variations in the frequency of cold surge events based on daily mean temperature and daily minimum temperature data in China's Mainland from 1960 to 2008. During these 48 years four high frequency centers of cold surge events were located in Xinjiang, central North China, northeast China, and southeast China. A main frequency peak of cold surge events occurs in autumn for the four regions and another peak is detected in spring over northeast China and southeast China. The regional pattern of cold surge frequencies is in accordance with the perturbation kinetic energy distribution in October December, January, and February April. The long-term decreasing trend ( 0.2 times/decade) of cold surge frequencies in northeast China and decadal variations in China are related to the variations of the temperature difference between southern and northern China in the winter monsoon season; these variations are due to the significant rising of winter temperatures in high latitudes.展开更多
The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial ...The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial domains.The transformation method in the wavenumber domain has simpler processing expression and higher processing effi ciency than in the spatial domain;however,they are unstable at low latitude.In this paper,the conclusion that the sum is 0 of two vertical magnetic fi eld components(magnetization inclinations are also perpendicular)in 2D is used for the 3D transformation of the magnetization direction and the magnetic field component.In addition,the transformation method at low latitudes based on vertical relationship(VMT)is proposed,which is an iterative algorithm that converts the transformation of the magnetization direction and the magnetic field component at the low latitude into the high latitude.This method restrains the instability of transformation of constant and variable magnetization direction and magnetic fi eld components in low latitudes.The accuracy,stability,and practicality are verifi ed from synthetic models and real data.展开更多
Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data f...Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Donnees SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years.展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFC1505903)the National Natural Science Foundation of China(Grant No.41775071)the National Key R&D Program of China(Grant No.2016YFA0602401)
文摘The authors previous study reported the important role of extratropical intraseasonal oscillation(ISO)on the occurrence of a typical heatwave event over the Yangtze River Valley.Based on the ECMWF subseasonal reforecast database,this follow-up study evaluates the extended-range prediction skill of the heatwave event and further unravels the close link between the ISO and extended-range prediction of the event.With a two-week lead time,this heatwave event fails to occur in the reforecast because the predicted surface temperature is signi cantly underesti-mated.More detailed analysis demonstrates that the biases for both the intensity and the location of the warming region are primarily attributable to the inaccurate extratropical intrasea-sonal traveling signals.This work strongly indicates that accurately capturing the extratropical intraseasonal signal from the Eurasian continent is indispensable for extended-range prediction of East Asian extreme heatwave events.
基金supported jointly by the National Natural Science Foundation of China (40975039)the National Basic Research Program of China (2006CB400504/ 2009CB421401 and GYHY20070605)
文摘This paper demonstrates regional characteristics, a long-term decreasing trend, and decadal variations in the frequency of cold surge events based on daily mean temperature and daily minimum temperature data in China's Mainland from 1960 to 2008. During these 48 years four high frequency centers of cold surge events were located in Xinjiang, central North China, northeast China, and southeast China. A main frequency peak of cold surge events occurs in autumn for the four regions and another peak is detected in spring over northeast China and southeast China. The regional pattern of cold surge frequencies is in accordance with the perturbation kinetic energy distribution in October December, January, and February April. The long-term decreasing trend ( 0.2 times/decade) of cold surge frequencies in northeast China and decadal variations in China are related to the variations of the temperature difference between southern and northern China in the winter monsoon season; these variations are due to the significant rising of winter temperatures in high latitudes.
基金supported by the subject “Study on the Comprehensive Processing and Interpretation Method and Software Development for Aerial Geophysics (No. 2017YFC0602202)” from National major Research and Development Project of China (No. 2017YFC0602200)。
文摘The transformation of the magnetization direction and the magnetic fi eld component is one of the important methods in magnetic data processing and transformation,which can be conducted in both wavenumber and spatial domains.The transformation method in the wavenumber domain has simpler processing expression and higher processing effi ciency than in the spatial domain;however,they are unstable at low latitude.In this paper,the conclusion that the sum is 0 of two vertical magnetic fi eld components(magnetization inclinations are also perpendicular)in 2D is used for the 3D transformation of the magnetization direction and the magnetic field component.In addition,the transformation method at low latitudes based on vertical relationship(VMT)is proposed,which is an iterative algorithm that converts the transformation of the magnetization direction and the magnetic field component at the low latitude into the high latitude.This method restrains the instability of transformation of constant and variable magnetization direction and magnetic fi eld components in low latitudes.The accuracy,stability,and practicality are verifi ed from synthetic models and real data.
基金Supported by the National Natural Science Foundation of China(No.41076117)
文摘Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Donnees SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years.