In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes ...In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes of the winter upper-level wind field over Asian mid-high latitude region are characterized by the out-of-phase variation in the intensity of the subtropical and temperate jets over East Asia and the meridional shift of the subtropical jet axis,on interannual and multiannual scales,respectively.The first leading variability mode can be used as a good measure to represent the integral variation of atmospheric general circulation in Asian mid-latitude region.Composite analyses suggest that the first leading variability mode of the winter upper-level wind field is intimately related to the atmospheric circulation and temperature anomalies in the northern hemispheric mid-latitude region.展开更多
Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal v...Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.展开更多
The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian ...The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian Ocean has attracted increasingly more attention, especially with the proposition of the Indian Ocean Dipole (IOD) mode. However, these phenomena are often stud- ied separately without much consideration of their interaction. Observations reveal a striking out-of-phase relationship between zonal gradients of sea surface height anomaly (SSHA) and sea surface temperature anomaly (SSTA) in the tropical Indian and Pacific Oceans. Since the two oceans share the ascending branch of the Walker cells over the warm pool, the variation within one of them will affect the other. The accompanied zonal surface wind anomalies are always opposite over the two basins, thus producing a tripole structure with opposite zonal gradients of SSHA/SSTA in the two oceans. This mode of variability has been referred to as Indo-Pacific Tripole (IPT). Based on observational data analyses and a simple ocean-atmosphere coupled model, this study tries to identify the characteristics and physical mechanism of IPT with a particular emphasis on the rela- tionships among ENSO, IOD, and IPT. The model includes the basic oceanic and atmospheric variables and the feedbacks between them, and takes into account the inter-basin connection through an atmospheric bridge, thus providing a valuable framework for further research on the short-term tropical climate variability.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41130963)
文摘In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes of the winter upper-level wind field over Asian mid-high latitude region are characterized by the out-of-phase variation in the intensity of the subtropical and temperate jets over East Asia and the meridional shift of the subtropical jet axis,on interannual and multiannual scales,respectively.The first leading variability mode can be used as a good measure to represent the integral variation of atmospheric general circulation in Asian mid-latitude region.Composite analyses suggest that the first leading variability mode of the winter upper-level wind field is intimately related to the atmospheric circulation and temperature anomalies in the northern hemispheric mid-latitude region.
基金supported by the Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05110201)the National Basic Research Program of China (Grant No. 2010CB951901)
文摘Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.
文摘The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian Ocean has attracted increasingly more attention, especially with the proposition of the Indian Ocean Dipole (IOD) mode. However, these phenomena are often stud- ied separately without much consideration of their interaction. Observations reveal a striking out-of-phase relationship between zonal gradients of sea surface height anomaly (SSHA) and sea surface temperature anomaly (SSTA) in the tropical Indian and Pacific Oceans. Since the two oceans share the ascending branch of the Walker cells over the warm pool, the variation within one of them will affect the other. The accompanied zonal surface wind anomalies are always opposite over the two basins, thus producing a tripole structure with opposite zonal gradients of SSHA/SSTA in the two oceans. This mode of variability has been referred to as Indo-Pacific Tripole (IPT). Based on observational data analyses and a simple ocean-atmosphere coupled model, this study tries to identify the characteristics and physical mechanism of IPT with a particular emphasis on the rela- tionships among ENSO, IOD, and IPT. The model includes the basic oceanic and atmospheric variables and the feedbacks between them, and takes into account the inter-basin connection through an atmospheric bridge, thus providing a valuable framework for further research on the short-term tropical climate variability.