期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于组合DNN的语音分离方法
1
作者 闵长伟 江华 +1 位作者 闫格 冯利琪 《数码设计》 2018年第4期77-84,共8页
近年来,随着深度学习的发展,深层模型被越来越多的学者用于语音分离。其中,以深度神经网络(DeepNeuralNetworks,DNN)为代表的深度学习在语音分离领域表现出了强大的优势。为了更好的提高目标语音的质量,我们提出一种基于组合DNN的语音... 近年来,随着深度学习的发展,深层模型被越来越多的学者用于语音分离。其中,以深度神经网络(DeepNeuralNetworks,DNN)为代表的深度学习在语音分离领域表现出了强大的优势。为了更好的提高目标语音的质量,我们提出一种基于组合DNN的语音分离方法(CE_DNN)。首先把两种不同的训练集放入DNN中进行训练,得到了两种不同参数的DNN训练模型,然后将测试数据放入两种训练模型后得到的输出结果进行结合,并且将不同类型的噪声与纯净语音进行混合,再配以噪声的不同输入信噪比进行试验。实验结果表明,与DNN语音分离系统相比,CE_DNN不仅可以很好的提高理想二值掩蔽(IBM)中的HIT-FA指标(命中率-误报率),还可以提高语音目标的短时客观语音可懂度(STOI)。 展开更多
关键词 语音分离 深度神经网络深度 深度学习 目标语音 纯净语音
下载PDF
基于组合DNN的语音分离方法
2
作者 闵长伟 江华 +1 位作者 闫格 冯利琪 《数码设计》 2019年第2期1-10,共10页
近年来,随着深度学习的发展,深层模型被越来越多的学者用于语音分离.其中,以深度神经网络(Deep Neural Networks,DNN)为代表的深度学习在语音分离领域表现出了强大的优势.为了更好的提高目标语音的质量,我们提出一种基于组合DNN的语音... 近年来,随着深度学习的发展,深层模型被越来越多的学者用于语音分离.其中,以深度神经网络(Deep Neural Networks,DNN)为代表的深度学习在语音分离领域表现出了强大的优势.为了更好的提高目标语音的质量,我们提出一种基于组合DNN的语音分离方法(CE_DNN).首先把两种不同的训练集放入DNN中进行训练,得到了两种不同参数的DNN训练模型,然后将测试数据放入两种训练模型后得到的输出结果进行结合,并且将不同类型的噪声与纯净语音进行混合,再配以噪声的不同输入信噪比进行试验.实验结果表明,与DNN语音分离系统相比,CE_DNN不仅可以很好的提高理想二值掩蔽(IBM)中的HIT-FA指标(命中率-误报率),还可以提高语音目标的短时客观语音可懂度(STOI). 展开更多
关键词 语音分离 深度神经网络深度 深度学习 目标语音 纯净语音
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部