In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB...In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.展开更多
Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for...Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.展开更多
基金Supported by China National Petroleum Corporation Innovation Foundation(No.J02060)and Subsidized by Special Funds for Major State Basic Research Projects(No.G1999064800)
文摘In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.
文摘Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.