Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable...Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).展开更多
Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric se...Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric semiconductor materials,novel nanodevices have been demonstrated,from which a new field called piezotronics was formulated.The core of piezotronics is to study the mechanism of the piezoelectric effect on tuning the charge transport behavior across various junctions or interfaces,with potential applications in sensors,microelectromechanical systems,and force/pressure triggered electric devices.Here following the theoretical frame work of piezotronic effect,analytical solutions of piezoelectric heterojunction are presented to investigate the electrical transport behavior at a p-n junction.Numerical simulation is given for guiding future experimental measurements.展开更多
A simple and effective method for the preparation of amphiphilic graphene(AG)is presented under an organic solvent-free synthetic condition.The synthetic route first involves a cyclization reaction between carboxylic ...A simple and effective method for the preparation of amphiphilic graphene(AG)is presented under an organic solvent-free synthetic condition.The synthetic route first involves a cyclization reaction between carboxylic groups on graphene oxide and the amino groups on 5,6-diaminopyrazine-2,3-dicarbonitrile,and subsequent reduction by hydrazine.Results of UV-vis spectroscopy,Fourier transformed infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),thermogravimetric analysis(TGA)and Raman spectroscopy have confirmed that the covalent functionalization of graphene can be achieved through the formation of imidazo[4,5-b]pyrazine on the graphene sheets.As a result,AG can be successfully dispersed in water and common organic solvents.This work successfully provides a facile and efficient way to fabricate AG and may extend the potential applications of graphene-based materials in nanoelectronic devices,polymer fillers and biological field.展开更多
文摘Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).
基金partly supported by the Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities(Grant No.Lzujbky-2013-35)
文摘Due to the coupling of piezoelectric and semiconducting dual properties,much attention has been focused on the piezoelectric semiconductor materials,such as ZnO,ZnS,CdS and GaN.With the usage of these piezoelectric semiconductor materials,novel nanodevices have been demonstrated,from which a new field called piezotronics was formulated.The core of piezotronics is to study the mechanism of the piezoelectric effect on tuning the charge transport behavior across various junctions or interfaces,with potential applications in sensors,microelectromechanical systems,and force/pressure triggered electric devices.Here following the theoretical frame work of piezotronic effect,analytical solutions of piezoelectric heterojunction are presented to investigate the electrical transport behavior at a p-n junction.Numerical simulation is given for guiding future experimental measurements.
基金supported by the NSFC for Excellent Young Scholars(Grant No.21322402)National Natural Science Foundation of China(Grant Nos.21274064,61204095,51173081)+2 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-11-0992)Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2011761,BK2012431,BK2009025)NJUPT(Grant No.NY211022)
文摘A simple and effective method for the preparation of amphiphilic graphene(AG)is presented under an organic solvent-free synthetic condition.The synthetic route first involves a cyclization reaction between carboxylic groups on graphene oxide and the amino groups on 5,6-diaminopyrazine-2,3-dicarbonitrile,and subsequent reduction by hydrazine.Results of UV-vis spectroscopy,Fourier transformed infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),thermogravimetric analysis(TGA)and Raman spectroscopy have confirmed that the covalent functionalization of graphene can be achieved through the formation of imidazo[4,5-b]pyrazine on the graphene sheets.As a result,AG can be successfully dispersed in water and common organic solvents.This work successfully provides a facile and efficient way to fabricate AG and may extend the potential applications of graphene-based materials in nanoelectronic devices,polymer fillers and biological field.