The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we re...The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we report the heterogeneous asymmetric hydrogenation of 2-methylquinoline over solid chiral catalysts,which were prepared by the one-pot polymerization of(1R,2R)-N-(4-vinyl-benzenesulfonyl)-1,2-diphenylethane-1,2-diamine(VDPEN)and divinylbenzene(DVB)in the presence or absence of activated carbon(C)or carbon nanotubes(CNTs),followed by Ru coordination and anion exchange.The solid chiral catalysts were fully characterized by N2 sorption analysis,elemental analysis,TEM,FT-IR spectroscopy,and 13C CP-MAS NMR.All the solid chiral catalysts could efficiently catalyze the asymmetric hydrogenation of 2-methylquinoline to afford 2-methyl-1,2,3,4-tetrahydroquinoline with 90%ee.Studies have shown that polymer/C and polymer/CNTs composites are more active than pure polymers.The polymer/CNTs composite exhibited the highest activity among all the solid chiral catalysts under identical conditions,owing to the unique morphology of CNTs.The recycling stabilities of the solid chiral catalysts were greatly improved when ionic liquids(ILs)were employed as solvents;this is mainly attributed to the decreased leaching amount of anions owing to the confinement effect of ILs on ionic compounds.展开更多
Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interacti...Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interactions of the inner gold core and outer gold nanoshell plasmons of all multipolar orders and hence the red-shifts of the plasmon resonance modes and the enhanced quadrupole mode peaks were observed.The interference of the quadrupole mode peak with the subradiant dipole mode caused a Fano-dip in the scattering spectrum.By increasing the core offset-value in the BGSG nanotube,the Fano dip with low energy showed a red-shift and became deeper.Unexpectedly the plasmon coupling between a GSG nanotube and a BGSG nanotube can lead to two strong Fano dips in the scattering spectra of the dimer.It was further noted that the thin side of the BGSG nanotube located at two sides of the dimer gap can lead to the strong near-field coupling between two BGSG nanotubes and hence a deeper and broader Fano dip.展开更多
We fabricate arrays of metallic nanoparticle dimers with nanometer separation using electron beam lithography and angle evaporation. These "nanogap" dimers are fabricated on thin silicon nitride membranes to enable ...We fabricate arrays of metallic nanoparticle dimers with nanometer separation using electron beam lithography and angle evaporation. These "nanogap" dimers are fabricated on thin silicon nitride membranes to enable high resolution transmission electron microscope imaging of the specific nanoparticle geometries. Plasmonic resonances of the pairs are characterized by dark-field scattering micro-spectroscopy, which enables the optical scattering from individual nano- structures to be measured by using a spatially-filtered light source to illuminate a small area. Scattering spectra from individual dimers are correlated with transmis- sion electron microscope images and finite-difference time-domain simulations of their electromagnetic response, with excellent agreement between simulation and experiment. We observe a strong polarization dependence with two dominant scattering peaks in spectra taken with the polarization aligned along the dimer axis. This response arises from a unique Fano interference, in which the bright hybridized modes of an asymmetric dimer are able to couple to the dark higher- order hybridized modes through substrate-mediated coupling. The presence of this interference is strongly dependent on the nanoparticle geometry that defines the plasmon energy profile but also on the intense localization of charge at the dielectric surface in the nanogap region for separations smaller than 6 nm.展开更多
基金supported by the National Natural Science Foundation of China (21733009, 21621063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200)~~
文摘The development of heterogeneous catalytic processes is crucial for the synthesis of chiral compounds for both academic and industrial applications.However,thus far,such achievements have remained elusive.Herein,we report the heterogeneous asymmetric hydrogenation of 2-methylquinoline over solid chiral catalysts,which were prepared by the one-pot polymerization of(1R,2R)-N-(4-vinyl-benzenesulfonyl)-1,2-diphenylethane-1,2-diamine(VDPEN)and divinylbenzene(DVB)in the presence or absence of activated carbon(C)or carbon nanotubes(CNTs),followed by Ru coordination and anion exchange.The solid chiral catalysts were fully characterized by N2 sorption analysis,elemental analysis,TEM,FT-IR spectroscopy,and 13C CP-MAS NMR.All the solid chiral catalysts could efficiently catalyze the asymmetric hydrogenation of 2-methylquinoline to afford 2-methyl-1,2,3,4-tetrahydroquinoline with 90%ee.Studies have shown that polymer/C and polymer/CNTs composites are more active than pure polymers.The polymer/CNTs composite exhibited the highest activity among all the solid chiral catalysts under identical conditions,owing to the unique morphology of CNTs.The recycling stabilities of the solid chiral catalysts were greatly improved when ionic liquids(ILs)were employed as solvents;this is mainly attributed to the decreased leaching amount of anions owing to the confinement effect of ILs on ionic compounds.
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11174113,11204129 and 11274171)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(RFDP)(Grant Nos.20120091110001 and 20130091130004)Qing Lan Project of Jiangsu Province
文摘Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interactions of the inner gold core and outer gold nanoshell plasmons of all multipolar orders and hence the red-shifts of the plasmon resonance modes and the enhanced quadrupole mode peaks were observed.The interference of the quadrupole mode peak with the subradiant dipole mode caused a Fano-dip in the scattering spectrum.By increasing the core offset-value in the BGSG nanotube,the Fano dip with low energy showed a red-shift and became deeper.Unexpectedly the plasmon coupling between a GSG nanotube and a BGSG nanotube can lead to two strong Fano dips in the scattering spectra of the dimer.It was further noted that the thin side of the BGSG nanotube located at two sides of the dimer gap can lead to the strong near-field coupling between two BGSG nanotubes and hence a deeper and broader Fano dip.
文摘We fabricate arrays of metallic nanoparticle dimers with nanometer separation using electron beam lithography and angle evaporation. These "nanogap" dimers are fabricated on thin silicon nitride membranes to enable high resolution transmission electron microscope imaging of the specific nanoparticle geometries. Plasmonic resonances of the pairs are characterized by dark-field scattering micro-spectroscopy, which enables the optical scattering from individual nano- structures to be measured by using a spatially-filtered light source to illuminate a small area. Scattering spectra from individual dimers are correlated with transmis- sion electron microscope images and finite-difference time-domain simulations of their electromagnetic response, with excellent agreement between simulation and experiment. We observe a strong polarization dependence with two dominant scattering peaks in spectra taken with the polarization aligned along the dimer axis. This response arises from a unique Fano interference, in which the bright hybridized modes of an asymmetric dimer are able to couple to the dark higher- order hybridized modes through substrate-mediated coupling. The presence of this interference is strongly dependent on the nanoparticle geometry that defines the plasmon energy profile but also on the intense localization of charge at the dielectric surface in the nanogap region for separations smaller than 6 nm.