In this study,we have prepared the blending of gold nanoparticles-multiwalled nanotubes (Au-MCNTs) and then applied the new nanocomposites to modify the glassy carbon electrode (GCE) for highly sensitive detection of ...In this study,we have prepared the blending of gold nanoparticles-multiwalled nanotubes (Au-MCNTs) and then applied the new nanocomposites to modify the glassy carbon electrode (GCE) for highly sensitive detection of the interaction between anticancer drug daunorubicin (DNR) and cancer cells. Electrochemical analysis indicates that the Au-MCNT modified GCE shows high sensitivity and could track the real time response of cancer cells under DNR treatments. Therefore,this new nano-interface and Au-MCNT modified electrode could be explored as a rapid,highly sensitive,and convenient real-time detection strategy in cancer related research and would have prospect in other biomedical applications.展开更多
In this work,we demonstrated the enhanced oxygen evolution reaction(OER) activity of flower-shaped cobalt-nickel oxide(NiCo_2O_4) decorated with iridium-nickel bimetal as an electrode material.The samples were pre...In this work,we demonstrated the enhanced oxygen evolution reaction(OER) activity of flower-shaped cobalt-nickel oxide(NiCo_2O_4) decorated with iridium-nickel bimetal as an electrode material.The samples were prepared by carefully depositing pre-synthesized IrNi nanopartides on the surfaces of the NiCo_2O_4 nano-flowers.Compared with bare NiCo_2O_4,IrNi,and IrNi/Co_3O_4,the IrNi/NiCo_2O_4 exhibited significantly enhanced electrocatalytic activity in the OER,including a lower overpotential of 210 mV and a higher current density at an overpotential of 540 mV.We found that the IrNi/NiCo_2O_4 showed more efficient electron transport behavior and reduced polarization because of its bimetal IrNi modification by analyzing its Tafel slope and turnover frequency.Furthermore,the electrocatalytic mechanism of IrNi/NiCo_2O_4 in the OER was studied,and it was found that the combined active sites of the composite effectively improved the rate determining step.The synergic effect of the bimetal and metal oxide plays an important role in this reaction,enhancing the transmission efficiency of electrons and providing more active sites for the OER.The results reveal that IrNi/NiCo_2O_4 is an excellent electrocatalyst for OER.展开更多
Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy...Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.展开更多
基金supported by the National Natural Science Founda-tion of China (90713023 & 20675014)the Natural Science Foundation of Jiangsu Province (BK2008149)+4 种基金the Foundation of Talent Project and disci-pline project of Ningbo University (B00121104700 & XKL126)National High Technology Research and Development Program of China (2007AA022007)Doctoral Fund of Ministry of Education of China (20090092110028)National Basic Research Program of China (2010CB732404)Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, China
文摘In this study,we have prepared the blending of gold nanoparticles-multiwalled nanotubes (Au-MCNTs) and then applied the new nanocomposites to modify the glassy carbon electrode (GCE) for highly sensitive detection of the interaction between anticancer drug daunorubicin (DNR) and cancer cells. Electrochemical analysis indicates that the Au-MCNT modified GCE shows high sensitivity and could track the real time response of cancer cells under DNR treatments. Therefore,this new nano-interface and Au-MCNT modified electrode could be explored as a rapid,highly sensitive,and convenient real-time detection strategy in cancer related research and would have prospect in other biomedical applications.
基金supported by the National Natural Science Foundation of China(61371021 and 61671284)the support of Shanghai Education Commission(Peak Discipline Construction)
文摘In this work,we demonstrated the enhanced oxygen evolution reaction(OER) activity of flower-shaped cobalt-nickel oxide(NiCo_2O_4) decorated with iridium-nickel bimetal as an electrode material.The samples were prepared by carefully depositing pre-synthesized IrNi nanopartides on the surfaces of the NiCo_2O_4 nano-flowers.Compared with bare NiCo_2O_4,IrNi,and IrNi/Co_3O_4,the IrNi/NiCo_2O_4 exhibited significantly enhanced electrocatalytic activity in the OER,including a lower overpotential of 210 mV and a higher current density at an overpotential of 540 mV.We found that the IrNi/NiCo_2O_4 showed more efficient electron transport behavior and reduced polarization because of its bimetal IrNi modification by analyzing its Tafel slope and turnover frequency.Furthermore,the electrocatalytic mechanism of IrNi/NiCo_2O_4 in the OER was studied,and it was found that the combined active sites of the composite effectively improved the rate determining step.The synergic effect of the bimetal and metal oxide plays an important role in this reaction,enhancing the transmission efficiency of electrons and providing more active sites for the OER.The results reveal that IrNi/NiCo_2O_4 is an excellent electrocatalyst for OER.
基金the National Basic Research Program of China (2012CB933301)the National Natural Science Foundation of China (21305070, 21475064)+3 种基金the Natural Science Foundation of Jiangsu Province (BK20130861)the Sci-Tech Support Plan of Jiangsu Province (BE2014719)Specialized Research Fund for the Doctoral Program of Higher Education of China (IRT1148, 20133223120013)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.