期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
纳米Fe_2O_3的制备及其对AP热分解的催化作用 被引量:17
1
作者 刘建勋 李凤生 +2 位作者 陈爱四 杨永林 马振叶 《推进技术》 EI CAS CSCD 北大核心 2006年第4期381-384,共4页
采用溶胶-凝胶法、水热法及强迫水解法,制备了球形、立方形、纺缍形及针形四种不同形貌的纳米Fe2O3粒子。通过透射电子显微镜(TEM)、X衍射(XRD)、比表面积(BET)对纳米粒子的粒径、形貌、结构、比表面积进行了表征,用差示扫描量热仪(DSC... 采用溶胶-凝胶法、水热法及强迫水解法,制备了球形、立方形、纺缍形及针形四种不同形貌的纳米Fe2O3粒子。通过透射电子显微镜(TEM)、X衍射(XRD)、比表面积(BET)对纳米粒子的粒径、形貌、结构、比表面积进行了表征,用差示扫描量热仪(DSC)研究了Fe2O3对高氯酸铵(AP)热分解的催化性能。结果表明:纳米Fe2O3对AP的高温热分解催化作用较微米的效果好。不同形貌的纳米Fe2O3粒子有着各自不同的比表面积,比表面积较大的纳米纺缍形和针形Fe2O3较比表面积较小的纳米立方形和球形的催化效果好。比表面积最大的纳米针形Fe2O3使AP的高温热分解峰温度降低了67.3℃,表观分解放热提高了785 J.g-1,表现出较好的催化性能。 展开更多
关键词 ^纳米催化剂^+ 制备 固体推进剂 催化 热分解
下载PDF
Doping effect of cations(Zr^(4+),Al^(3+),and Si^(4+)) on MnO_x/CeO_2 nano-rod catalyst for NH_3-SCR reaction at low temperature 被引量:7
2
作者 Xiaojiang Yao Jun Cao +4 位作者 Li Chen Keke Kang Yang Chen Mi Tian Fumo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期733-743,共11页
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods... Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst. 展开更多
关键词 MnOx/CeO2 nano‐rod catalyst Doping effect Oxygen vacancy Surface acidity Low‐temperature NH3‐SCR reaction
下载PDF
Synthesis of Polyketone by Copolymerization of Styrene and CO Using Carbon Nanotube-Complex Pd^(2+) Catalyst 被引量:1
3
作者 郭锦棠 肖淼 +1 位作者 王海霞 胡光 《Transactions of Tianjin University》 EI CAS 2014年第2期86-90,共5页
The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was ch... The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The construction and crystallization property of PK were evaluated by Fourier transform infrared spectroscopy(FTIR),13C-nuclear magnetic resonance(NMR) and XRD,respectively.The catalyst showed excellent activity and reusability in promoting the fabrication of PK.It can be recycled 14 times with the highest total catalytic activity of 4 239.64 gPK/(gPd·h) at Pd content of 8.63wt%.The results indicate that the prepared catalyst is effective to catalyze the copolymerization of CO and styrene. 展开更多
关键词 carbon nanotube supported catalyst catalytic activity COPOLYMERIZATION POLYKETONE
下载PDF
Vermiform Ni@CNT derived from one-pot calcination of Ni-MOF precursor for improving hydrogen storage of MgH_(2)
4
作者 Zi-yin DAI Bing ZHANG +10 位作者 Hideo KIMURA Li-rong XIAO Rong-han LIU Cui NI Chuan-xin HOU Xue-qin SUN Yu-ping ZHANG Xiao-yang YANG Rong-hai YU Wei DU Xiu-bo XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2629-2644,共16页
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg... The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent. 展开更多
关键词 Mg-based hydrogen storage material activation energy Ni-loaded carbon nanotubes catalyst mechanism
下载PDF
Synthesis of Biomorphic ZrO2-CeO2 Nanostructures by Silkworm Silk Template 被引量:1
5
作者 张宗见 李嘉 +2 位作者 孙富升 吴恒亮 邝丰栾 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期351-354,I0002,共5页
A simple and green technique has been developed to prepare hierarchical biomorphic ZrO2- CeO2, using silkworm silk as the template. Different from traditional immersion technics, the whole synthesis process depends mo... A simple and green technique has been developed to prepare hierarchical biomorphic ZrO2- CeO2, using silkworm silk as the template. Different from traditional immersion technics, the whole synthesis process depends more on the restriction or direction functions of the silkworm silk template. The analytic results showed that ZrO2-CeO2 exhibited a well-crystallized hierarchically interwoven hollow fiber structure with 16-28 μm in diameter. The grain size of the sample calcined at 800 ℃ was about 14 nm. Consequently, the interwoven meshwork at three dimensions is formed due to the direction of biotemplate. The action mechanism is summarily discussed here. It may bring the biomorphic ZrO2-CeO2 nanomaterials with hierarchical interwoven structures to more applications, such as catalysts. 展开更多
关键词 NANOMATERIAL CATALYST ZrO2-CeO2 Biomorphic Silkworm silk template
下载PDF
SnO_2 nano-sheet as an efficient catalyst for CO oxidation 被引量:2
6
作者 彭洪根 彭跃 +4 位作者 徐香兰 方修忠 刘玥 蔡建信 王翔 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期2004-2010,共7页
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S... Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes. 展开更多
关键词 SnO2 catalyst Nano-sheet Nano-rod Exposed active facet EO oxidation
下载PDF
Enhanced ethanol electro-oxidation on CeO_2-modified Pt/Ni catalysts in alkaline solution 被引量:3
7
作者 徐志花 饶丽霞 +3 位作者 宋海燕 严朝雄 张利君 杨水彬 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期305-312,共8页
Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts ... Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells. 展开更多
关键词 Direct ethanol fuel cell Ethanol oxidation CeO2 nanoparticle Composite electrodeposition ELECTROCATALYST
下载PDF
Photocatalytic Degradation of Phenol over MWCNTs-TiO2 Composite Catalysts with Different Diameters
8
作者 李晨 汪文栋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第4期423-428,448,共7页
Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen ads... Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency. 展开更多
关键词 Photocatalytic degradation PHENOL Titanium dioxide Multi-walled carbon nanotube Composite catalyst
下载PDF
Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions
9
作者 彭天右 吕红金 +1 位作者 曾鹏 张晓虎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期464-470,I0004,共8页
ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electro... ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and ni- trogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the present ZnO suspension were investigated, photocatalytic H2 evolution efficiency from the The experimental results indicate that ZnO rianoparticles calcined at 400℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500℃, and the photoeatalytie H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail. 展开更多
关键词 Photocatalytic hydrogen production ZnO Photocatalytic activity Sacrificial reagent
下载PDF
Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Properties of InVO4 Hierarchical Microspheres and InVO4 Nanowires
10
作者 林雪 赵世铎 +5 位作者 郭晓宇 高新 史久静 刘怡丽 翟宏菊 王庆伟 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期428-432,J0001,共6页
In this work, InVO4 hierarchical microspheres and InVO4 nanowires were successfully synthesized by a facile hydrothermal method. Field emission scanning electron microscopy showed that InVO4 crystals can be fabricated... In this work, InVO4 hierarchical microspheres and InVO4 nanowires were successfully synthesized by a facile hydrothermal method. Field emission scanning electron microscopy showed that InVO4 crystals can be fabricated in different morphologies by simply manipulating the reuction parameters of hydrothermal process. The as-prepared InVO4 photocatalysts exhibited higher photocatalytic activities in the degradation of rhodamine B under visible-light irradiation (λ〉420 nm) compared with commercial P25 TiO2. Furthermore, the as-synthesized InVO4 hierarchical microspheres showed higher photocatalytic activity than that of InVO4 nanowires. Up to 100% Rh B (3 μmol/L) was decolorized after visible-light irradiation for 40 min. In addition, the reason for the difference in the photocatalytic activities for InVO4 hierarchical microspheres and InVO4 nanowires was studied based on their structures and morphologies. 展开更多
关键词 PHOTOCATALYSIS InVO4 NANOWIRES MICROSPHERES Visible-light irradiation
下载PDF
Effects of Co_3O_4 nanocatalyst morphology on CO oxidation:Synthesis process map and catalytic activity 被引量:6
11
作者 曾良鹏 李孔斋 +2 位作者 黄樊 祝星 李宏程 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期908-922,共15页
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy... This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity. 展开更多
关键词 Cobalt oxide nanocatalyst Synthesis process map Morphology effect Catalytic activity Carbon monoxide oxidation
下载PDF
Controllable fabrication of ordered Pt nanorod array as catalytic electrode for passive direct methanol fuel cells 被引量:3
12
作者 汪艳林 程庆庆 +5 位作者 袁婷 周毅 张海峰 邹志青 方建慧 杨辉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1089-1095,共7页
The nanostructure of the catalytic electrode has a great effect on the performance of direct metha- nol fuel cells (DMFCs), including catalyst utilization, precious metal loading, water balance, and oxygen mass tran... The nanostructure of the catalytic electrode has a great effect on the performance of direct metha- nol fuel cells (DMFCs), including catalyst utilization, precious metal loading, water balance, and oxygen mass transfer. In this work, ordered arrays of platinum nanorods with different diameters were directly grown onto microporous layers by electrodeposition via a sacrificial template, and were used as the catalytic cathode for passive DMFCs. The use of these ordered electrodes led to a dramatic decrease in cathode polarization behavior. The maximum power density of passive DMFCs fabricated with catalytic electrodes of 200 and 100 am Pt nanorod arrays were 17.3 and 12.0 mW/cm2, respectively. The obtained improvement in performance was ascribed to the fact that the ordered nanostructured electrode not only increased the electrochemically active surface area and the catalyst utilization, but also enhanced oxygen mass transfer and water balance in the system. 展开更多
关键词 Catalytic electrodeOrdered nanorodCatalyst utilizationDirect methanol fuel cell
下载PDF
Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution 被引量:2
13
作者 张亭亭 何传生 +1 位作者 黎琳波 林雨青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1275-1282,共8页
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and... The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells. 展开更多
关键词 Nitrogen-doped carbon nanoblock Trihydroxymethyl aminomethane ELECTROCATALYST Oxygen reduction reaction NANOCATALYST
下载PDF
Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi_2WO_6 被引量:9
14
作者 袁博 张宝 +4 位作者 王志亮 卢胜梅 李军 刘龑 李灿 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期440-446,共7页
The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists becau... The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst. 展开更多
关键词 Flower-like Bi_2WO_6 Toluene oxidation BENZALDEHYDE COCATALYST Palladium nanoparticle
下载PDF
A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles 被引量:1
15
作者 黄启福 李文志 +4 位作者 林其钊 皮冬 胡超 邵春宇 张海涛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期681-691,共11页
This paper reviews several important factors that influence the synthesis of dumbbell‐like nanoparticles,which can significantly enhance the catalyst activity in catalytic combustion. The dumbbell‐like nanoparticles... This paper reviews several important factors that influence the synthesis of dumbbell‐like nanoparticles,which can significantly enhance the catalyst activity in catalytic combustion. The dumbbell‐like nanoparticles discussed in this article refer to a hetero‐structure with two nanoparticles of different materials in contact with each other. This nanostructure can be considered as a special intermediate between individual spherical nanoparticles and a core–shell nanostructure. Therefore,the synthesis of dumbbell‐like nanoparticles is more difficult than other structures. The controllability of the synthesis process, the nanoparticle size and size distribution, and the morphology of the final products depend on many factors: the seed size and size ratio could be used to influence the controllability of epitaxial growth. The component sizes and size distribution could be varied by carefully controlling the reaction temperature and reaction time. The morphology of the dumbbell‐like nanoparticles is closely related to the solvent polarity, the precursor ratio, the lattice mismatch between the two components, and the surfactant concentration. Some related synthesis methods are also briefly introduced in each section to facilitate understanding. This summary will benefit the development of new dumbbell‐like nanoparticles with various components, which have great potential in catalytic combustion of more dysoxidizable gases. 展开更多
关键词 Dumbbell-like nanoparticle Catalyst synthesis Catalytic combustion Catalytic oxidation
下载PDF
Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts 被引量:9
16
作者 JIANG Hong MENG Lie CHEN Rizhi JIN Wanqin XING Weihong XU Nanping 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期205-215,共11页
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi... Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined. 展开更多
关键词 porous ceramic membrane membrane reactor heterogeneous catalysis
下载PDF
Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst 被引量:14
17
作者 安欣 左宜赞 +1 位作者 张强 王金福 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期88-94,共7页
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and spac... A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained. 展开更多
关键词 KINETICS CO2 hydrogenation METHANOL Cu/Zn/Al/Zr catalyst
下载PDF
Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution 被引量:5
18
作者 Qian Chen Yao Nie +3 位作者 Mei Ming Guangyin Fan Yun Zhang Jin-Song Hu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1791-1811,共21页
Among the various types of heterogeneous catalysts,supported metal nanocatalysts(SMNCs)have attracted widespread interest in chemistry and materials science,due to their advantageous features,such as high efficiency,s... Among the various types of heterogeneous catalysts,supported metal nanocatalysts(SMNCs)have attracted widespread interest in chemistry and materials science,due to their advantageous features,such as high efficiency,stability,and reusability for catalytic reactions.However,to obtain well-defined SMNCs and inhibit nanoparticle aggregation,traditional approaches generally involve numerous organic reagents,complex steps,and specialized equipment,thus hindering the practical and large-scale synthesis of SMNCs.In this review,we summarize green and sustainable synthetic methodologies for the assembly of SMNCs,including low temperature pyrolysis and solid-state,surfactant-and reductant-free,and ionic liquid assisted syntheses.The conventional application of SMNCs for electrochemical hydrogen evolution and the corresponding achievements are subsequently discussed.Finally,future perspectives toward the sustainable production of SMNCs are presented. 展开更多
关键词 Supported metal nanocrystals Sustainable production Green synthesis ELECTROCATALYSIS Hydrogen evolution reaction
下载PDF
Highly efficient visible-light photocatalytic H2 evolution over 2D–2D Cd S/Cu7S4 layered heterojunctions 被引量:13
19
作者 Doudou Ren Rongchen Shen +2 位作者 Zhimin Jiang Xinyong Lu Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期31-40,共10页
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan... Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs. 展开更多
关键词 Visible-light photocatalytic H2 evolution CdS nanosheet Cu7S4 cocatalysts Layered heterojunction Charge separation
下载PDF
Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction 被引量:5
20
作者 Jianfei Kong Wenlong Cheng 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期951-969,共19页
The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development ... The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development of the next generation of greener fuel cells.Here,we comprehensively describe the'big picture'of recent advances made in the rational design of ORR electrocatalysts,including molecule‐based,metal‐oxide‐based,metal‐nanomaterial‐based and two‐dimensional electrocatalysts.Transition metals can fabricate molecular electrocatalysts with N4‐macrocycles such as porphyrin‐class compounds and the so‐formed M-N-C active centre plays a crucial role in determining the catalytic performances towards the ORR.Group‐IV and‐V Transition metal oxides represent another class of promising alternative of Pt‐based catalysts for the ORR which catalytic activity largely depends on the surface structure and the introduction of surface defects.Recent advances in synthesis of metallic nanoparticles(NPs)allow for precise control over particle sizes and shapes and the crystalline facets exposed to enhance the ORR performance of electrocatalysts.Two‐dimensional materials such as functionalized grapheme or MoS2are emerging as novel electrocatalysts for the ORR.This review covers various aspects towards the design of future ORR electrocatalysts,including the catalytic performance,stability,durability and cost.Some novel electrocatalysts even surpass commercial Pt/C systems,demonstrating their potential to be alternatives in industrial applications.Despite the encouraging progress,challenges,which are also described,remain to be overcome before the real‐world application of novel ORR electrocatalysts. 展开更多
关键词 Oxygen reduction reaction ELECTROCATALYST NANOMATERIAL Molecular electrocatalyt Two‐dimensional material
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部