期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Heterostructured BiOI@La(OH)_3 nanorods with enhanced visible light photocatalytic NO removal 被引量:6
1
作者 孙艳娟 肖香 +2 位作者 董兴安 董帆 张炜 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期217-226,共10页
Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after th... Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region. 展开更多
关键词 Bismuth oxyiodido@lanthanide hydroxide heterostructure Nanorod Photocatalysis Visible light Nitrogen oxide removal
下载PDF
Polycondensation of ammonium thiocyanate into novel porous g-C_3N_4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation 被引量:10
2
作者 崔言娟 王愉雄 +2 位作者 王浩 曹福 陈芳艳 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1899-1906,共8页
Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic propert... Porous graphitic carbon nitride(pg-C3N4) nanosheets have been prepared through a one-step ammonia thermopolymerization method.The effects of synthetic temperature on the structural,optical and photocatalytic properties of the samples have been investigated.Characterization results show that the heptazine-based conjugate heterocyclic structure was formed over 500℃,which is attributed to the inhibitory effect of ammonia from the decomposition of NH4SCN.Precise nanosheet morphology and an increased pore distribution with an enlarged surface area are observed for the samples obtained under high temperatures.Optical analysis results show that the bandgap of the samples widens and photoluminescene intensity is gradually quenched as the treating temperature is increased.The results demonstrate that a higher polymerization temperature improves the nanolayer structure,porosity and migration rate of the photo-induced carriers of the samples.The pg-C3N4 nanosheets prepared at 600℃ presents the highest photocatalytic activity for hydrogen evolution from water under visible-light irradiation.This study demonstrates a novel strategy for the synthesis and optimization of polymer semiconductor nanosheets with gratifying photocatalytic performance. 展开更多
关键词 Carbon nitride NANOSHEET Semiconductor AMMONIA PHOTOCATALYSIS Hydrogen evolution
下载PDF
Enhanced photocatalytic properties of hierarchical nanostructured TiO_2 spheres synthesized with titanium powders 被引量:3
3
作者 陶杰 邓杰 +2 位作者 董祥 朱宏 陶海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期2049-2056,共8页
Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis... Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25. 展开更多
关键词 nano-TiO 2 MICROSPHERE photocatalytic properties hydrothermal synthesis Ti powders
下载PDF
Synthesis,characterization and photocatalytic performance of rod-shaped Pt/PbWO_4 composite microcrystals 被引量:6
4
作者 余长林 白羽 +3 位作者 何洪波 范文宏 朱丽华 周晚琴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2178-2185,共8页
Rod-shaped PbW O4 microcrystals of length 1 μm were fabricated by a hydrothermal route and subsequent calcination. Pt nanoparticles(NPs) of different contents(0.5 wt%,1 wt% and 2 wt%) were subsequently deposited ... Rod-shaped PbW O4 microcrystals of length 1 μm were fabricated by a hydrothermal route and subsequent calcination. Pt nanoparticles(NPs) of different contents(0.5 wt%,1 wt% and 2 wt%) were subsequently deposited on the PbW O4 microcrystals,producing robust Pt/PbW O4 composite microcrystals. The PbW O4 microcrystals and Pt/PbW O4 photocatalysts were characterized by X-ray diffraction,N2 sorption measurements,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron,photoluminescence,Fourier-transform infrared,and ultraviolet-visible diffuse reflectance spectroscopies. The photocatalytic performances of the catalysts were evaluated by the consecutive photocatalytic degradation of acid orange II dye. The Pt/PbW O4 composite microcrystals exhibited high photocatalytic activity and stability. The deposition of Pt NPs produced surface plasmon resonance(SPR),which induced a large visible light absorption. A Pt NP content of 1-2 wt% resulted in an ~2 times increase in photocatalytic activity,compared with the activity of Pt/PbW O4. The crystal structure and high crystallinity of PbW O4 resulted in its favorable photocatalytic property,and the SPR effect of the Pt NPs promoted visible light harvesting. The Pt NPs also enhanced the separation of photo-generated electrons and holes,which further promoted the photocatalytic reaction. 展开更多
关键词 Rod-shaped Lead tungstate microcrystals Platium nanoparticles Photocatalytic activity Photocatalytic stability Surface plasma Electron-hole separation
下载PDF
Synthesis of nano-MoS_2/bentonite composite and its application for removal of organic dye 被引量:2
5
作者 胡坤宏 赵娣芳 刘俊生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2484-2490,共7页
A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron micr... A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that nano-MoS2 particles are distributed on the surface of bentonite and form layered structures with layer distance of about 0.64 nm. The composite presents an excellent performance for the removal of methyl orange. Some operation conditions affect the removal efficiency of methyl orange, such as dosage of composite, initial concentration of methyl orange, temperature and pH value. However, light source does not influence the removal efficiency. The removal mechanism is attributed to the adsorption of methyl orange on the nano-MoS2/bentonite composite. The adsorption of methyl orange on the composite is in accordance with the pseudo-second-order kinetic model. 展开更多
关键词 molybdenum disulfide BENTONITE NANOPARTICLES PHOTOCATALYSIS ADSORPTION organic dye
下载PDF
Preparation, Characterization and Photocatalytic Activity of Fe, La Co-doped Nanometer Titanium Dioxide Photocatalysts 被引量:2
6
作者 石中亮 郭满 +1 位作者 王林军 姚淑华 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期199-204,I0001,共7页
A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanat... A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times. 展开更多
关键词 Nanometer titanium dioxide Fe and La co-doping Photocatalytic activity Template method Methyl orange
下载PDF
Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions
7
作者 彭天右 吕红金 +1 位作者 曾鹏 张晓虎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期464-470,I0004,共8页
ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electro... ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and ni- trogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the present ZnO suspension were investigated, photocatalytic H2 evolution efficiency from the The experimental results indicate that ZnO rianoparticles calcined at 400℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500℃, and the photoeatalytie H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail. 展开更多
关键词 Photocatalytic hydrogen production ZnO Photocatalytic activity Sacrificial reagent
下载PDF
Facile synthesis of tin oxide nanocrystals and their photocatalytic activity
8
作者 贾志谦 孙慧杰 +2 位作者 王妍 甄甜丽 常青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1813-1818,共6页
Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is f... Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones. 展开更多
关键词 tin oxide nanocrystals facile synthesis photocatalytic activity
下载PDF
Mesh-Like Bi2MoO6 with Enhanced and Stable Visible Light Photocatalytic Activity
9
作者 王庆伟 郭晓宇 +2 位作者 林雪 刘春波 翟宏菊 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期568-572,I0004,共6页
Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh... Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh-like Bi2MoO6 sample exhibited excellent visible-light-driven photocatalytic e ciency. The photocatalytic activity of the mesh-like Bi2MoO6 sample was much higher than that of bulk Bi2MoO6 sample prepared by solid-state reac-tion. Di erence in the photocatalytic activities of the mesh-like Bi2MoO6 sample and bulk Bi2MoO6 sample was further investigated. 展开更多
关键词 Bi2MoO6 NANOSTRUCTURE Hydrothermally synthesis Photocatalytic property
下载PDF
Substrate-dependent photoreactivities of BiOBr nanoplates prepared at different pH values 被引量:4
10
作者 艾智慧 王吉玲 张礼知 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2145-2154,共10页
In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degr... In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation. 展开更多
关键词 DEGRADATION Visible light Substrate dependent photoreactivity Bismuth oxybromide nanoplate Rhodamine B Salicylic acid
下载PDF
Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis 被引量:2
11
作者 吴义平 吴边边 唐祥虎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期166-172,I0001,共8页
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa... A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS. 展开更多
关键词 Cuprous oxide Silver nanoparticle Surface-enhanced Raman scattering Photo-catalytic degradation In situ detection
下载PDF
Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Properties of InVO4 Hierarchical Microspheres and InVO4 Nanowires
12
作者 林雪 赵世铎 +5 位作者 郭晓宇 高新 史久静 刘怡丽 翟宏菊 王庆伟 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期428-432,J0001,共6页
In this work, InVO4 hierarchical microspheres and InVO4 nanowires were successfully synthesized by a facile hydrothermal method. Field emission scanning electron microscopy showed that InVO4 crystals can be fabricated... In this work, InVO4 hierarchical microspheres and InVO4 nanowires were successfully synthesized by a facile hydrothermal method. Field emission scanning electron microscopy showed that InVO4 crystals can be fabricated in different morphologies by simply manipulating the reuction parameters of hydrothermal process. The as-prepared InVO4 photocatalysts exhibited higher photocatalytic activities in the degradation of rhodamine B under visible-light irradiation (λ〉420 nm) compared with commercial P25 TiO2. Furthermore, the as-synthesized InVO4 hierarchical microspheres showed higher photocatalytic activity than that of InVO4 nanowires. Up to 100% Rh B (3 μmol/L) was decolorized after visible-light irradiation for 40 min. In addition, the reason for the difference in the photocatalytic activities for InVO4 hierarchical microspheres and InVO4 nanowires was studied based on their structures and morphologies. 展开更多
关键词 PHOTOCATALYSIS InVO4 NANOWIRES MICROSPHERES Visible-light irradiation
下载PDF
Preparation and photocatalytic performance of Cu-doped TiO_2 nanoparticles 被引量:5
13
作者 杨希佳 王姝 +2 位作者 孙海明 王晓兵 连建设 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期504-509,共6页
Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emissi... Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the crystalline structure, chemical valence states and morphology of TiO2 nanoparticles. UV-Vis absorption spectrum was used to measure the optical absorption property of the samples. The photocatalytic performance of the samples was characterized by degrading 20 mg/L methyl orange under UV-Vis irradiation. The results show that the Cu-doped TiO2 nanoparticles exhibit a significant increase in photocatalytic performance over the pure TiO2 nanoparticles, and the TiO2 nanoparticles doped with 1.0% Cu show the best photocatalytic performance. The improvement in photocatalytic performance is attributed to the enhanced light adsorption in UV-Vis range and the decrease of the recombination rate of photoinduced electron-hole oair of the Cu-doped TiO2 nanoparticles. 展开更多
关键词 TIO2 Cu NANOPARTICLES PHOTOCATALYSIS DOPING sol-gel method
下载PDF
Octahedral Cu_2O-modified TiO_2 nanotube arrays for efficient photocatalytic reduction of CO_2 被引量:5
14
作者 李延芳 张文沛 +3 位作者 沈星 彭鹏飞 熊良斌 余颖 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2229-2236,共8页
A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was ... A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents. 展开更多
关键词 Titania nanotube arrays Octahedral cuprous oxide nanoparticles Photocatalytic carbon dioxide reduction Hydrocarbon product PHOTOACTIVITY
下载PDF
Fabrication and Photocatalysis of TiO2 Flower-like Nanostructures 被引量:1
15
作者 王延宗 洪勋 +1 位作者 王冠中 王晓平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期559-562,共4页
TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like ... TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like and rod nanostructures formed in succession after a longer reaction time. Samples prepared at 80 ℃ for 4 h arc amorphous, and anatase-dominated crystal phase emerged in the sample prepared for as long as 10 h. Almost pure anatase phase were obtained in TiO2 nanostructures by annealing the samples at a temperature of 300 ℃. Photoeatalysis of the TiO2 nanostructures was characterized by the degradation of RhB dye molecules in an aqueous solution exposed to ultraviolet light. Results show a 7 cm^2 annealed TiO2 flower-like nanostrueture having the degradation rate of RhB as fast as 29.8 times that of the dye solution exposed to ultraviolet light alone. 展开更多
关键词 TiO2 nanostructure PHOTODEGRADATION RhB solution
下载PDF
Novel visible-light-responding InVO_4-Cu_2O-TiO_2 ternary nanoheterostructure: Preparation and photocatalytic characteristics 被引量:5
16
作者 冯海波 李亚萍 +5 位作者 罗冬明 谭功荣 蒋剑波 袁惠敏 彭三军 钱东 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期855-862,共8页
A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nan... A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nanoheterostructure was characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy(UV-vis/DRS). The TEM and HRTEM images of 10%InVO4-40%Cu2O-50%TiO2 confirm the formation of nanoheterostructures resulting from contact of the nanosized TiO2, Cu2O and InVO4 in the size of 5–20 nm in diameter. The InVO4-Cu2O-TiO2 nanoheterostructure, when compared with TiO2, Cu2O, InVO4, InVO4-TiO2 and Cu2O-TiO2, shows significant enhancement in the photocatalytic performance for the degradation of methyl orange(MO) under visible-light irradiation. With a 9 W energy-saving fluorescent lamp as the visible-light source, the MO degradation rate of 10%InVO4-40%Cu2O-50%TiO2 reaches close to 90% during 5 h, and the photocatalytic efficiency is maintained at over 90% after six cycles. This may be mainly ascribed to the matched bandgap configurations of TiO2, Cu2O and InVO4, and the formations of two p-n junctions by the p-type semiconductor Cu2O with the n-type semiconductors TiO2 and InVO4, all of which favor spatial photogenerated charge carrier separation. The X-ray photoelectron spectroscopy(XPS) characterization for the used 10%InVO4-40%Cu2O-50%TiO2 reveals that only a small shakeup satellite peak appears for Cu(II) species, implying bearable photocorrosion of Cu2O. This work could provide new insight into the design and preparation of novel visible-light-responding semiconductor composites. 展开更多
关键词 Indium orthovanadate Cuprous oxide Titanium dioxide Nanoheterostructure Visible light Photocatalytic degradation Methyl orange
下载PDF
Morphology-controlled synthesis and photocatalytic properties of K_(1.9)Na_(0.1)Ta_2O_6·2H_2O
17
作者 李英宣 丁小玲 +4 位作者 赵杰 朱云庆 李燕 邓文叶 王传义 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2164-2170,共7页
The controllable synthesis of tantalate K1.9Na0.1Ta2O6·2H2O has been successfully achieved by a two-step technique,namely,the molten salt and hydrothermal methods,at a low temperature. By simply varying the KOH c... The controllable synthesis of tantalate K1.9Na0.1Ta2O6·2H2O has been successfully achieved by a two-step technique,namely,the molten salt and hydrothermal methods,at a low temperature. By simply varying the KOH concentration in the hydrothermal process,K1.9Na0.1Ta2O6·2H2O particles with spherical,cuboctahedral,and durian-like morphologies were synthesized. The photocatalytic activity of the obtained samples for the degradation of rhodamine B was studied under ultraviolet light,which indicates that the photocatalytic properties of the samples are highly dependent on their morphologies. The K1.9Na0.1Ta2O6·2H2O nanospheres,with rough surfaces and the highest specific surface area,exhibit the best performance. The present work provides a unique approach for the controlled synthesis of tantalate photocatalysts,which are difficult to achieve through other synthetic approaches. 展开更多
关键词 TANTALATE K1.9Na0.1Ta2O6·2H2O Morphology-controlled synthesis Hydrothermal method NANOSPHERE Photocatalysis
下载PDF
2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet:Fabrication mechanism and application potential for photocatalytic H2 evolution 被引量:10
18
作者 Wenhua Xue Wenxi Chang +2 位作者 Xiaoyun Hu Jun Fan Enzhou Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期152-163,共12页
Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted... Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted as ZnS(en)0.5)as a hard template.Inorganic–organic hybrid ZnS(en)0.5,Cd0.5Zn0.5S(en)x,and Cd0.5Zn0.5S nanosheets were sequentially fabricated,and their transformation processes were analyzed in detail.The fabricated Cd0.5Zn0.5S nanosheets exhibited high photocatalytic hydrogen evolution reaction activity in the presence of a sacrificial agent.The Cd0.5Zn0.5S nanosheets exhibited remarkably high H2 production activity of~1395μmol∙h^−1∙g^−1 in pure water with no co-catalyst,which is the highest value reported thus far for bare photocatalysts,to the best of our knowledge.The high activity of these nanosheets is attributed to their distinct nanostructure(e.g.,short transfer distance of photoinduced charge carriers,large number of unsaturated surface atoms,and large surface area).Moreover,ternary NiCo2S4 nanoparticles were employed to facilitate the charge separation and enhance the surface kinetics of H2 evolution.The H2 production rate reached~62.2 and~2436μmol∙h^−1∙g^−1 in triethanolamine and pure water,respectively,over the NiCo2S4/Cd0.5Zn0.5S heterojunctions.The result indicated that the Schottky junction was critical to the enhanced activity.The proposed method can be used for fabricating other highly efficient CdZnS-based photocatalysts for solar-energy conversion or other applications. 展开更多
关键词 MESOPOROUS ULTRATHIN Cd0.5Zn0.5S nanosheets PHOTOCATALYSIS Hydrogen evolution
下载PDF
Environmentally‐friendly carbon nanomaterials for photocatalytic hydrogen production 被引量:6
19
作者 Sheng Xiong Rongdi Tang +6 位作者 Daoxin Gong Yaocheng Deng Jiangfu Zheng Ling Li Zhanpeng Zhou Lihua Yang Long Su 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1719-1748,共30页
Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a lo... Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected. 展开更多
关键词 Carbon nanostructured materials PHOTOCATALYSIS Hydrogen production
下载PDF
Preparation of amphiphilic TiO_2 Janus particles with highly enhanced photocatalytic activity 被引量:5
20
作者 Yanting Shi Qiaoling Zhang +2 位作者 Youzhi Liu Junbo Chang Jing Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期786-794,共9页
Stearic-acid-modified TiO2 (STA-TiO2) particles were prepared via the impregnation approach and used as a precursor for preparing TiO2 Janus particles. The morphology, structure, and properties of the TiO2 Janus parti... Stearic-acid-modified TiO2 (STA-TiO2) particles were prepared via the impregnation approach and used as a precursor for preparing TiO2 Janus particles. The morphology, structure, and properties of the TiO2 Janus particles were characterized using Fourier-transform infrared spectroscopy, ultraviolet- visible diffuse reflectance spectroscopy, thermogravimetric analysis, fluorescence microscopy, high-resolution transmission electron microscopy, contact angle analysis, dynamic light scattering, biological microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy measurements. The results show that TiO2 Janus particles can be successfully prepared via toposelective surface modification. STA grafted on the surface of TiO2 enhances its hydrophobicity, promotes charge separation, and improves its adsorption capacity for organic compounds. The TiO2 Janus particles strongly adsorb on an oil-water interface to form a stable Pickering emulsion. The degradation rates of high-concentration kerosene and nitrobenzene wastewaters when the photocatalyst is pure TiO2, STA-TiO2, or TiO2 Janus particles are discussed and compared. The degradation rates were determined using an ultraviolet-visible spectrophotometer. It was found that the Pickering emulsion stabilized by the TiO2 Janus particles exhibited the best photocatalytic performance;these Janus particles show promising potential for catalytic application. 展开更多
关键词 Titanium dioxide Pickering emulsion NANOPARTICLES PHOTOCATALYSIS DEGRADATION
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部