We will present some technologies and devices employed for the fabrication of tunable micro-optics. Tunable liquid lenses and lens arrays as well as polymer membrane-based microlenses and scanning mirrors are of both ...We will present some technologies and devices employed for the fabrication of tunable micro-optics. Tunable liquid lenses and lens arrays as well as polymer membrane-based microlenses and scanning mirrors are of both academic and industrial interest in this area.展开更多
Fragmentations of N2 in linearly polarized femtosecond 410 and 820 nm intense laser fields were studied by using the velocity mapping technique. Different behaviors of N2 at 410 and 820 nm were observed. Both the kine...Fragmentations of N2 in linearly polarized femtosecond 410 and 820 nm intense laser fields were studied by using the velocity mapping technique. Different behaviors of N2 at 410 and 820 nm were observed. Both the kinetic energy distributions and angular distributions of fragment ions in 410 nm field show weak dependency on laser intensities in the non- saturation regime, in contrast to the case in 820 nm. Different excited electronic states, i.e., non-Coulombic potentials populated via vertical'excitation, are suggested to play crucial roles in fragmentations at short wavelength.展开更多
Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐s...Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐shell structured nanoparticles as nanoreactors for various chemical reactions.A very brief overview of synthetic strategies is provided with emphasis on recent research progress in the last five years.Catalytic applications of these yolk‐shell structured nanoreactors are then discussed by covering photocatalysis,methane reforming and electrochemical conversion.The state of the art research and perspective in future development are also highlighted.展开更多
A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the...A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.展开更多
Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and dif...Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and difficult to obtain.Here,we designed and prepared a ternary nanocomposite MXene@Au@Cd S,which can be used in the field of efficient and excellent photocatalytic hydrogen production.The MXene@Au@Cd S has a hydrogen production rate of 17,070.43μmol g^-1h^-1(tested for 2 h),which is 1.85 times that of pure Cd S nanomaterials.The improved hydrogen production performance of the MXene@Au@Cd S is attributed to:(i)MXene provides more active adsorption sites and reaction centers for Au and Cd S nanoparticles;(ii)the synergistic effect of Au’s strong surface plasmon resonance expands the optical response range of Cd S.Therefore,this work solves the problem of the solid connection between the surface functional groups of photocatalyst,and achieves rapid interface charge transfer and long-term stability during the hydrogen production.展开更多
An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicin...An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.展开更多
文摘We will present some technologies and devices employed for the fabrication of tunable micro-optics. Tunable liquid lenses and lens arrays as well as polymer membrane-based microlenses and scanning mirrors are of both academic and industrial interest in this area.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20633070 and No.20473090).
文摘Fragmentations of N2 in linearly polarized femtosecond 410 and 820 nm intense laser fields were studied by using the velocity mapping technique. Different behaviors of N2 at 410 and 820 nm were observed. Both the kinetic energy distributions and angular distributions of fragment ions in 410 nm field show weak dependency on laser intensities in the non- saturation regime, in contrast to the case in 820 nm. Different excited electronic states, i.e., non-Coulombic potentials populated via vertical'excitation, are suggested to play crucial roles in fragmentations at short wavelength.
文摘Yolk‐shell structured nanoparticles are of immense scientific and technological interests because of their unique architecture and myriad of applications.This review summarizes recent progresses in the use of yolk‐shell structured nanoparticles as nanoreactors for various chemical reactions.A very brief overview of synthetic strategies is provided with emphasis on recent research progress in the last five years.Catalytic applications of these yolk‐shell structured nanoreactors are then discussed by covering photocatalysis,methane reforming and electrochemical conversion.The state of the art research and perspective in future development are also highlighted.
基金supported by the National Natural Science Foundation of China (21575022, 21535003) the National High Technology Research and Development Program of China (2015AA020502)+1 种基金 the Fundamental Research Funds for the Central Universities (2242016K41055)Qing Lan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002)
文摘A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.
基金supported by the National Natural Science Foundation of China(21872119)the Talent Engineering Training Funding Project of Hebei Province(A201905004)the Research Program of the College Science and Technology of Hebei Province(ZD2018091)。
文摘Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and difficult to obtain.Here,we designed and prepared a ternary nanocomposite MXene@Au@Cd S,which can be used in the field of efficient and excellent photocatalytic hydrogen production.The MXene@Au@Cd S has a hydrogen production rate of 17,070.43μmol g^-1h^-1(tested for 2 h),which is 1.85 times that of pure Cd S nanomaterials.The improved hydrogen production performance of the MXene@Au@Cd S is attributed to:(i)MXene provides more active adsorption sites and reaction centers for Au and Cd S nanoparticles;(ii)the synergistic effect of Au’s strong surface plasmon resonance expands the optical response range of Cd S.Therefore,this work solves the problem of the solid connection between the surface functional groups of photocatalyst,and achieves rapid interface charge transfer and long-term stability during the hydrogen production.
基金Supported by the Scientific Research Fund of Liaoning University of Technology of China under Grant No.X201319the Scientific Research Fund of Liaoning Provincial Education Department under Grant No.L2014242
文摘An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.