Cancer is a major threat to public health in the 21st century because it is one of the leading causes of death worldwide.The mechanisms of carcinogenesis,cancer invasion,and metastasis remain unclear.Thus,the developm...Cancer is a major threat to public health in the 21st century because it is one of the leading causes of death worldwide.The mechanisms of carcinogenesis,cancer invasion,and metastasis remain unclear.Thus,the development of a novel approach for cancer detection is urgent,and real-time monitoring is crucial in revealing its underlying biological mechanisms.With the optical and chemical advantages of quantum dots(QDs),QD-based nanotechnology is helpful in constructing a biomedical imaging platform for cancer behavior study.This review mainly focuses on the application of QD-based nanotechnology in cancer cell imaging and tumor microenvironment studies both in vivo and in vitro,as well as the remaining issues and future perspectives.展开更多
Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat ge...Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging(MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.展开更多
基金supported by the Academic Award for Excellent Ph.D.Candidates Funded by the Ministry of Education of China(No.5052011303014)the National Natural Science Foundation of China(No.81171396)+1 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Nos.20621502 and 20921062)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.4103005).
文摘Cancer is a major threat to public health in the 21st century because it is one of the leading causes of death worldwide.The mechanisms of carcinogenesis,cancer invasion,and metastasis remain unclear.Thus,the development of a novel approach for cancer detection is urgent,and real-time monitoring is crucial in revealing its underlying biological mechanisms.With the optical and chemical advantages of quantum dots(QDs),QD-based nanotechnology is helpful in constructing a biomedical imaging platform for cancer behavior study.This review mainly focuses on the application of QD-based nanotechnology in cancer cell imaging and tumor microenvironment studies both in vivo and in vitro,as well as the remaining issues and future perspectives.
基金financial support provided by the National Natural Science Foundation of China (81571809, 81771981, 31400663, and 21376192)the Natural Science Foundation of Shaanxi Province (2015JM2063 and 2017JM2031)
文摘Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging(MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.