Carbohydrates constitute the most abundant organic matter in nature, serving as structural components and energy sources, and mediating a wide range of cellular activities. The emergence of nanomaterials with distinct...Carbohydrates constitute the most abundant organic matter in nature, serving as structural components and energy sources, and mediating a wide range of cellular activities. The emergence of nanomaterials with distinct optical, magnetic, and electronic properties has witnessed a rapid adoption of these materials for biomedical research and applications. Nanomaterials of various shapes and sizes having large specific surface areas can be used as multivalent scaffolds to present carbohydrate ligands. The resulting glyconanomaterials effectively amplify the glycan-mediated interactions, making it possible to use these materials for sensing, imaging, diagnosis, and therapy. In this review, we summarize the synthetic strategies for the preparation of various glyconanomaterials. Examples are given where these glyconanomaterials have been used in sensing and differentiation of proteins and cells, as well as in imaging glycan-medicated cellular responses.展开更多
基金The authors are grateful for financial supports from the National Institutes of Health (Nos. R01GM080295 and 2R15GM066279), the National Science Foundation (No. CHE-1112436), the University of Massachusetts Lowell, and KTH--Royal Institute of Technology, Sweden.
文摘Carbohydrates constitute the most abundant organic matter in nature, serving as structural components and energy sources, and mediating a wide range of cellular activities. The emergence of nanomaterials with distinct optical, magnetic, and electronic properties has witnessed a rapid adoption of these materials for biomedical research and applications. Nanomaterials of various shapes and sizes having large specific surface areas can be used as multivalent scaffolds to present carbohydrate ligands. The resulting glyconanomaterials effectively amplify the glycan-mediated interactions, making it possible to use these materials for sensing, imaging, diagnosis, and therapy. In this review, we summarize the synthetic strategies for the preparation of various glyconanomaterials. Examples are given where these glyconanomaterials have been used in sensing and differentiation of proteins and cells, as well as in imaging glycan-medicated cellular responses.