An ultra-thin film photovoltaic cell, which incorporates an AlxIn1-xAs/GaAs heterojunction, is simulated using Adept 1D simulation tool, and it is with an energy conversion efficiency of 20.06% (under 1 sun, AM1.5G il...An ultra-thin film photovoltaic cell, which incorporates an AlxIn1-xAs/GaAs heterojunction, is simulated using Adept 1D simulation tool, and it is with an energy conversion efficiency of 20.06% (under 1 sun, AM1.5G illumination) for 604 nm cell thickness (excluding the substrate thickness), and optimized layer thickness and doping concentration for each layer of the device. The device has an n-type AlAs window layer (highly doped), an n-type Al_xIn_(1-x)As emitter layer and a p-type GaAs base layer. Germanium (Ge) substrate is used for the structure. The device parameters are optimized separately for each layer. Based on these optimizations, the ultra-thin film solar cell design is proposed after careful consideration of lattice mismatch between two adjacent layers of the device.展开更多
Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biologi...Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biological materials. Here,taking advantage of the synergistic effect of different dimensional nanoscale building blocks,we fabricate nacre-like films that reconcile high strength and toughness.The obtained ternary lamellar composite films are constructed by one-dimensional xonotlite nanowires and two-dimensional montmorillonite nanosheets with the assistance of poly(vinyl alcohol). The ternary composite films show high strength((241.8±10.2)MPa) and toughness((5.85±0.46) MJ m^-3),both of which are higher than that of the single nanofibrillar xonotlite network films or the binary montmorillonite/poly(vinyl alcohol) composite films. The excellent mechanical properties of the nacre-like ternary composite films are aroused by the synergistic toughening mechanism of the different dimensional building blocks. This strategy provides a facile approach to integrate the nacre-like composite films with potential applications in tissue engineering scaffold,strong air barrier coatings,and fire-retardant packing materials.展开更多
The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(C...The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(CVBs) manifested as polarization vortices represent a robust and emerging degree of freedom for information multiplexing with increased capacities. Here, we propose and demonstrate massivelyencoded optical data storage(ODS) by harnessing spatially variant electric fields mediated by segmented CVBs. By tight focusing polychromatic segmented CVBs to plasmonic nanoparticle aggregates, recordhigh multiplexing channels of ODS through different combinations of polarization states and wavelengths have been experimentally demonstrated with a low error rate. Our result not only casts new perceptions for tailoring light-matter interactions utilizing structured light but also enables a new prospective for ultra-high capacity optical memory with minimalist system complexity by combining CVB’s compatibility with fiber optics.展开更多
Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid s...Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.展开更多
文摘An ultra-thin film photovoltaic cell, which incorporates an AlxIn1-xAs/GaAs heterojunction, is simulated using Adept 1D simulation tool, and it is with an energy conversion efficiency of 20.06% (under 1 sun, AM1.5G illumination) for 604 nm cell thickness (excluding the substrate thickness), and optimized layer thickness and doping concentration for each layer of the device. The device has an n-type AlAs window layer (highly doped), an n-type Al_xIn_(1-x)As emitter layer and a p-type GaAs base layer. Germanium (Ge) substrate is used for the structure. The device parameters are optimized separately for each layer. Based on these optimizations, the ultra-thin film solar cell design is proposed after careful consideration of lattice mismatch between two adjacent layers of the device.
基金supported by the National Natural Science Foundation of China (51732011 and 21431006)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (21521001)+1 种基金the National Basic Research Program of China (2014CB931800)the Users with Excellence and Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (2015HSC-UE007 and 2015SRG-HSC038)
文摘Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biological materials. Here,taking advantage of the synergistic effect of different dimensional nanoscale building blocks,we fabricate nacre-like films that reconcile high strength and toughness.The obtained ternary lamellar composite films are constructed by one-dimensional xonotlite nanowires and two-dimensional montmorillonite nanosheets with the assistance of poly(vinyl alcohol). The ternary composite films show high strength((241.8±10.2)MPa) and toughness((5.85±0.46) MJ m^-3),both of which are higher than that of the single nanofibrillar xonotlite network films or the binary montmorillonite/poly(vinyl alcohol) composite films. The excellent mechanical properties of the nacre-like ternary composite films are aroused by the synergistic toughening mechanism of the different dimensional building blocks. This strategy provides a facile approach to integrate the nacre-like composite films with potential applications in tissue engineering scaffold,strong air barrier coatings,and fire-retardant packing materials.
基金the financial support from the National Key R&D Program of China (2018YFB1107200)the National Natural Science Foundation of China (91750110, 11674130, 61605061, 11674110 and 11874020)+2 种基金the Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081)the Natural Science Foundation of Guangdong Province (2016A030306016, 2016TQ03X981 and 2016A030308010)Pearl River S and T Nova Program of Guangzhou (201806010040)。
文摘The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(CVBs) manifested as polarization vortices represent a robust and emerging degree of freedom for information multiplexing with increased capacities. Here, we propose and demonstrate massivelyencoded optical data storage(ODS) by harnessing spatially variant electric fields mediated by segmented CVBs. By tight focusing polychromatic segmented CVBs to plasmonic nanoparticle aggregates, recordhigh multiplexing channels of ODS through different combinations of polarization states and wavelengths have been experimentally demonstrated with a low error rate. Our result not only casts new perceptions for tailoring light-matter interactions utilizing structured light but also enables a new prospective for ultra-high capacity optical memory with minimalist system complexity by combining CVB’s compatibility with fiber optics.
文摘Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.