ZnO micro/nanostructures with various morphologies were grown via hydrothermal etching of Zn foil.Controlling the reaction temperature and time,rod-like,pencil-like,tube-like and flowerlike ZnO micro/nanostructures co...ZnO micro/nanostructures with various morphologies were grown via hydrothermal etching of Zn foil.Controlling the reaction temperature and time,rod-like,pencil-like,tube-like and flowerlike ZnO micro/nanostructures could be prepared directly on the Zn foil surface at temperatures 100-180℃ with excellent reproducibility.X-ray diffraction patterns indicated that these ZnO micro/nanostructures were hexagonal.Possible mechanisms for the variation of morphology are discussed.Moreover,photoluminescence spectra of the as-grown samples revealed that all of them consist of UV emission band at around 392 nm.展开更多
A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a f...A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes.Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states.It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p,which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO.A physical model was suggested to elucidate the differences of ECL spectra.A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.展开更多
ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption ...ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.展开更多
基金financed by the 211 project of Anhui UniversityNational Natural Science Foundation of China (50901074, 50672001)+1 种基金Anhui Provincial Natural Science Fund (11040606M49)Higher Educational Natural Science Foundation of Anhui Province (KJ2010A012)
文摘ZnO micro/nanostructures with various morphologies were grown via hydrothermal etching of Zn foil.Controlling the reaction temperature and time,rod-like,pencil-like,tube-like and flowerlike ZnO micro/nanostructures could be prepared directly on the Zn foil surface at temperatures 100-180℃ with excellent reproducibility.X-ray diffraction patterns indicated that these ZnO micro/nanostructures were hexagonal.Possible mechanisms for the variation of morphology are discussed.Moreover,photoluminescence spectra of the as-grown samples revealed that all of them consist of UV emission band at around 392 nm.
基金supported by the National Natural Science Foundation of China (21075058,21005036,21127006)Startup Research Fund of Ministry of Education of China,Higher Educational Science and Technology Program of Shandong (J10LB12)+1 种基金Natural Science Foundation(ZR2010BZ004,JQ201106)Tai-Shan Scholar Research Fund of Shandong Province
文摘A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes.The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes.Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states.It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p,which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO.A physical model was suggested to elucidate the differences of ECL spectra.A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.
基金supported by the National Natural Science Foundation of China (Nos.60877029,10904109,60977035 and 60907021)the Natural Science Foundation of Tianjin (No.09JCYBJC01400)the Tianjin Key Subject for Materials Physics and Chemistry
文摘ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.