不可控的锂枝晶生长、严重的体积膨胀以及脆弱的固态电解质中间相(SEI)严重制约了锂金属电池(LMBs)的实际应用。在本研究中,我们成功设计合成了一类具有碳纳米管基底的硫化超交联聚苯乙烯刷(CNT-g-sxPS),并将其用作新型的三维锂金属载体...不可控的锂枝晶生长、严重的体积膨胀以及脆弱的固态电解质中间相(SEI)严重制约了锂金属电池(LMBs)的实际应用。在本研究中,我们成功设计合成了一类具有碳纳米管基底的硫化超交联聚苯乙烯刷(CNT-g-sxPS),并将其用作新型的三维锂金属载体。CNT-g-sxPS的层次化大孔、中孔和微孔能够促进锂离子的传输,缓解锂负极的体积变化,提供高比表面积以降低局部电流密度,从而实现快速且均匀的锂沉积/剥离。同时,孔骨架表面均匀分布的含硫基团可以与锂原位反应生成含Li2S的SEI,有利于构筑稳定的负极/电解液界面。此外,碳纳米管基底还能提供快速的电子传输路径。因此,利用CNT-g-sxPS负载的锂金属负极(CNT-g-sxPS@Cu/Li)组装的Li|Li对称电池在1 mA cm^(-2)、1 mAh cm^(-2)下可稳定循环超过500 h。当与磷酸铁锂正极(LFP)匹配时,利用CNT-g-sxPS@Cu/Li负极组装的全电池在1 C下循环600圈后仍然具有101 mAh g^(-1)的放电比容量,容量保持率为77%。展开更多
The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we de...The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.展开更多
Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-...Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).展开更多
Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrat...Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.展开更多
SiC granule films were fabricated onto porous glass substrate by RF-magnetron sputtering. Photoluminescence (PL) measurements show that there are light emissions at three different wavelengths. Ultraviolet emission ...SiC granule films were fabricated onto porous glass substrate by RF-magnetron sputtering. Photoluminescence (PL) measurements show that there are light emissions at three different wavelengths. Ultraviolet emission peaked at 360 nm originated from the band-band transmission of SiC nanoparticles with relatively small size. The 370 nm light emission was due to the luminescence of the nano-skeletons of porous glass that was formed during the etching of the glass substrate. The blue emission at about 460 nm was associated with the recombination of the excited electron and O-deficient defects appeared at the interface between SiC nanoparticles and the porous glass. Furthermore, the optimal PL performance was obtained when SiC deposited time was I h and the glass substrate was etched for 20 min in the annealing sample (450 ℃).展开更多
文摘不可控的锂枝晶生长、严重的体积膨胀以及脆弱的固态电解质中间相(SEI)严重制约了锂金属电池(LMBs)的实际应用。在本研究中,我们成功设计合成了一类具有碳纳米管基底的硫化超交联聚苯乙烯刷(CNT-g-sxPS),并将其用作新型的三维锂金属载体。CNT-g-sxPS的层次化大孔、中孔和微孔能够促进锂离子的传输,缓解锂负极的体积变化,提供高比表面积以降低局部电流密度,从而实现快速且均匀的锂沉积/剥离。同时,孔骨架表面均匀分布的含硫基团可以与锂原位反应生成含Li2S的SEI,有利于构筑稳定的负极/电解液界面。此外,碳纳米管基底还能提供快速的电子传输路径。因此,利用CNT-g-sxPS负载的锂金属负极(CNT-g-sxPS@Cu/Li)组装的Li|Li对称电池在1 mA cm^(-2)、1 mAh cm^(-2)下可稳定循环超过500 h。当与磷酸铁锂正极(LFP)匹配时,利用CNT-g-sxPS@Cu/Li负极组装的全电池在1 C下循环600圈后仍然具有101 mAh g^(-1)的放电比容量,容量保持率为77%。
基金supported by the National Natural Science Foundation of China (No.61575087, No.21505057, and No.61771227)the Natural Science Foundation ofJiangsu Province (No.BK20151164, No.BK20150227, and No.BK20170229)+2 种基金the Innovation Project of Jiangsu Province(No.KYLX16_1322)the Natural Science Foundation of the Jiangsu Higher Education Institutions (No.17KJB140007)Foundation of Xuzhou City (No.KC15MS030)
文摘The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.
文摘Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).
文摘Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.
基金National Science Foundation of China (10774037)Natural Science Foundation of Hebei Province (E2007000280)Foundation of Hebei Educational Committee (2006123)
文摘SiC granule films were fabricated onto porous glass substrate by RF-magnetron sputtering. Photoluminescence (PL) measurements show that there are light emissions at three different wavelengths. Ultraviolet emission peaked at 360 nm originated from the band-band transmission of SiC nanoparticles with relatively small size. The 370 nm light emission was due to the luminescence of the nano-skeletons of porous glass that was formed during the etching of the glass substrate. The blue emission at about 460 nm was associated with the recombination of the excited electron and O-deficient defects appeared at the interface between SiC nanoparticles and the porous glass. Furthermore, the optimal PL performance was obtained when SiC deposited time was I h and the glass substrate was etched for 20 min in the annealing sample (450 ℃).