期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
固-液纳米塑形法制备纳米有序介孔晶态CuCo_2O_4
1
作者 刘华 许珊 +1 位作者 邹国军 王晓来 《化工新型材料》 CAS CSCD 北大核心 2011年第S1期60-63,共4页
以硝酸铜和硝酸钴为前驱物,SBA-15为硬模板,利用一种简便的"固-液纳米塑形法"制备出纳米有序晶态介孔CuCo2O4复合氧化物,并通过X-射线衍射、N2吸脱附测试和透射电子显微镜对产物的物相和介孔结构进行了表征和分析。结果表明,... 以硝酸铜和硝酸钴为前驱物,SBA-15为硬模板,利用一种简便的"固-液纳米塑形法"制备出纳米有序晶态介孔CuCo2O4复合氧化物,并通过X-射线衍射、N2吸脱附测试和透射电子显微镜对产物的物相和介孔结构进行了表征和分析。结果表明,制备的介孔晶态CuCo2O4复合氧化物具有均匀的介孔结构、高比表面积以及较大的孔容。此外,初步讨论了纳米有序晶态介孔CuCo2O4复合氧化物在SBA-15孔道内形成机理。 展开更多
关键词 纳米塑形 固-液法 介孔CuCo2O4 纳米材料
下载PDF
Microstructure refinement of a dual phase titanium alloy by severe room temperature compression 被引量:1
2
作者 张志强 董利民 +3 位作者 杨洋 关少轩 刘羽寅 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2604-2608,共5页
Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the g... Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement. 展开更多
关键词 dual phase titamum alloy Ti-3AI-4.3V-3Mo alloy severe plastic detormatlon mlcrostructure retinement nanocrystalline grains TEXTURE
下载PDF
Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-nm Gold Nanowires 被引量:4
3
作者 Yang Lu Jun Song +1 位作者 Jian Yu Huang Jun Lou 《Nano Research》 SCIE EI CAS CSCD 2011年第12期1261-1267,共7页
The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single cry... The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-lO-nm gold nanowires. 展开更多
关键词 NANOWIRES in situ transmission electron microscope (TEM) mechanical characterization dislocation nucleation PLASTICITY
原文传递
Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness 被引量:4
4
作者 胡文涛 温斌 +8 位作者 黄权 肖建伟 于栋利 王雁宾 赵智胜 何巨龙 柳忠元 徐波 田永君 《Science China Materials》 SCIE EI CSCD 2017年第2期178-185,共8页
Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardne... Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability. 展开更多
关键词 nanotwinned diamond high temperature and high pressure(HTHP) plastic deformation HARDNESS
原文传递
Size-dependent transition of the deformation behavior of Au nanowires 被引量:1
5
作者 Na-Young Park Ho-Seok Nam +1 位作者 PiI-Ryung Cha Seung-Cheol Lee 《Nano Research》 SCIE EI CAS CSCD 2015年第3期941-947,共7页
Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamic... Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires. 展开更多
关键词 Au nanowire molecular dynamics size-dependent transition tensile deformationmechanism
原文传递
Size effect for achieving high mechanical performance body-centered cubic metals and alloys 被引量:3
6
作者 Yan Lu Xinyu Shu Xiaozhou Liao 《Science China Materials》 SCIE EI CSCD 2018年第12期1495-1516,共22页
Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These pr... Submicron and nanostructured body-centered cubic(BCC) metals exhibit unusual mechanical performance compared to their bulk coarse-grained counterparts, including high yield strength and outstanding ductility. These properties are important for their applications in micro-, nano-and even atomic-scale devices as well as for their usages as components for enhancing the performances of structural materials. One aspect of the unusual mechanical properties of small-sized BCC metals is closely related to their dimensional confinement. Decreasing the dimensions of single crystalline metals or the grain sizes of polycrystalline metals contributes significantly to the strengthening of the small-sized BCC metals.In the last decade, significant progress has been achieved in understanding the plasticity and deformation behaviors of small-sized BCC metals. This paper aims to provide a comprehensive review on the current understanding of size effects on the plasticity and deformation mechanisms of small-sized BCC metals. The techniques used for in situ characterization of the deformation behavior and mechanical properties of small-sized samples are also presented. 展开更多
关键词 body-centered cubic metals size effect plastic deformation mechanical properties
原文传递
Bio-inspired multifunctional metallic glass
7
作者 Yaxu He Yun Peng +5 位作者 Zhou Li Jiang Ma Xiyao Zhang Kesong Liu Weihua Wang Lei Jiang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第3期271-276,共6页
As a novel class of metallic materials, bulk metallic glasses(BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials... As a novel class of metallic materials, bulk metallic glasses(BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials exhibit inherent multifunctional integration, which provides some inspiration for scientists and engineers to construct multifunctional artificial materials. In this contribution, inspired by superhydrophobic self-cleaning lotus leaves, multifunctional bulk metallic glasses(BMG) materials have been fabricated through the thermoplastic forming-based process followed by the SiO_2/soot deposition. To mimic the microscale papillae of the lotus leaf, the BMG micropillar with a hemispherical top was first fabricated using micro-patterned silicon templates based on thermoplastic forming. The deposited randomly distributed SiO_2/soot nanostructures covered on BMG micropillars are similar to the branch-like nanostructures on papillae of the lotus leaf. Micro-nanoscale hierarchical structures endow BMG replica with superhydrophobicity, a low adhesion towards water, and self-cleaning, similar to the natural lotus leaf. Furthermore, on the basis of the observation of the morphology of BMG replica in the Si mould, the formation mechanism of BMG replica was proposed in this work. The BMG materials with multifunction integration would extend their practical engineering applications and we expect this method could be widely adopted for the fabrication of other multifunctional BMG surfaces. 展开更多
关键词 biological materials bio-inspired materials MULTIFUNCTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部