As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nan...As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.展开更多
Polymer-coated mesoporous carbon nanocomposites were prepared from the immobilization of acrylonitrile and acrylic acid copolymers with divinylbenzene as a crosslinker onto a mesoporous carbon framework.High surface a...Polymer-coated mesoporous carbon nanocomposites were prepared from the immobilization of acrylonitrile and acrylic acid copolymers with divinylbenzene as a crosslinker onto a mesoporous carbon framework.High surface areas were maintained after polymerization with accessible porosity.This functional nanocomposite was tested as an adsorbent for uranium from high salinity solutions.Uranium adsorption results have shown that the adsorption capacities are strongly influenced by the density of the amidoxime groups and the specific surface area.展开更多
文摘As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.
基金sponsored by the US Department of EnergyOffice of Nuclear Energy+2 种基金under contract DE-AC05-00OR22725 with Oak Ridge National Laboratorymanaged by UT-BattelleLLC
文摘Polymer-coated mesoporous carbon nanocomposites were prepared from the immobilization of acrylonitrile and acrylic acid copolymers with divinylbenzene as a crosslinker onto a mesoporous carbon framework.High surface areas were maintained after polymerization with accessible porosity.This functional nanocomposite was tested as an adsorbent for uranium from high salinity solutions.Uranium adsorption results have shown that the adsorption capacities are strongly influenced by the density of the amidoxime groups and the specific surface area.