Developing novel electrode materials for li-thium-ion batteries (LIBs) with rapid charge/discharge cap- ability and high cycling stability remains a big challenge to date. Herein, we demonstrate the design and synth...Developing novel electrode materials for li-thium-ion batteries (LIBs) with rapid charge/discharge cap- ability and high cycling stability remains a big challenge to date. Herein, we demonstrate the design and synthesis of ul- trathin MoS2 nanosheets in-situ grown on sponge-like carbon nanospheres by a simple diffusion-controiled process. The unique sponge-like carbon nanosphere core can be used as "reservoir" of electrolyte by adsorbing to shorten the ion- diffusion path, and meanwhile as "elastomer" to alleviate the structural change of the MoS2 nanosheets during the charge/ discharge processes. Furthermore, the vertical ultrathin MoS2 nanosheets with broadened interlayer space greatly enrich the electrochemical active sites. Consequently, the as-obtained MoS2/C nanospheres exhibit increased specific capacities at various rates with superior cycling stability compared to the MoS2/C floccules. It is reckoned that the present concept can be extended to other electrode materials for achieving high- rate and stable LIBs.展开更多
基金supported by the National Natural Science Foundation of China(21522602,51672082 and 91534202)the Shanghai Rising-Star Program(15QA1401200)+2 种基金the Innovation Program of Shanghai Municipal Education Commissionthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Fundamental Research Funds for the Central Universities(222201718002)
文摘Developing novel electrode materials for li-thium-ion batteries (LIBs) with rapid charge/discharge cap- ability and high cycling stability remains a big challenge to date. Herein, we demonstrate the design and synthesis of ul- trathin MoS2 nanosheets in-situ grown on sponge-like carbon nanospheres by a simple diffusion-controiled process. The unique sponge-like carbon nanosphere core can be used as "reservoir" of electrolyte by adsorbing to shorten the ion- diffusion path, and meanwhile as "elastomer" to alleviate the structural change of the MoS2 nanosheets during the charge/ discharge processes. Furthermore, the vertical ultrathin MoS2 nanosheets with broadened interlayer space greatly enrich the electrochemical active sites. Consequently, the as-obtained MoS2/C nanospheres exhibit increased specific capacities at various rates with superior cycling stability compared to the MoS2/C floccules. It is reckoned that the present concept can be extended to other electrode materials for achieving high- rate and stable LIBs.