Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.Th...Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.The influence of SiO2/Al2O3 mass ratio and the surfactant content on the particle size and morphology,pore structure,and acidity was characterized by the low temperature nitrogen adsorption/desorption (BET),SEM,TEM and NH3-TPD methods.The test results indicated that the most probable pore diameter of SiO2-Al2O3 nanoparticles was around 10 nm,the specific surface area was about 223-286 m2 /g,the pore volumes were about 0.48-0.63 cm 3 /g,and the particle sizes of porous SiO2-Al2O3 calcined at 550 ℃ were distributed always in the range between 10 nm to 50 nm.The calcined SiO2-Al2O3 nano-powders showed their acidity being stronger than the porous γ-Al2O3 support.展开更多
基金the Pre-Research Project of National Key Basic Research Program(2012CBT22702)the New Century Excellent Talents Program of Ministry of Education(NCET-10-0137)
基金the financial support of Liaoning Province National Science Fund (No.20072009)
文摘Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.The influence of SiO2/Al2O3 mass ratio and the surfactant content on the particle size and morphology,pore structure,and acidity was characterized by the low temperature nitrogen adsorption/desorption (BET),SEM,TEM and NH3-TPD methods.The test results indicated that the most probable pore diameter of SiO2-Al2O3 nanoparticles was around 10 nm,the specific surface area was about 223-286 m2 /g,the pore volumes were about 0.48-0.63 cm 3 /g,and the particle sizes of porous SiO2-Al2O3 calcined at 550 ℃ were distributed always in the range between 10 nm to 50 nm.The calcined SiO2-Al2O3 nano-powders showed their acidity being stronger than the porous γ-Al2O3 support.