Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was syn...Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.展开更多
3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra...3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.展开更多
ZnO-Au_(25) nanocomposites were synthesized by doping Au_(25) nanoclusters into the porous Zn O nanospheres. It was notable that the ultrasmall Au_(25) nanoclusters possessed uniform sizes and fine dispersibility on t...ZnO-Au_(25) nanocomposites were synthesized by doping Au_(25) nanoclusters into the porous Zn O nanospheres. It was notable that the ultrasmall Au_(25) nanoclusters possessed uniform sizes and fine dispersibility on the porous ZnO supports. A considerable correlation between the loading of Au_(25) nanoclusters and the photocatalytic activity was found. Compared with the pure ZnO nanospheres, the ZnO-Au_(25) nanocomposites exhibited more efficient photocatalytic activity in terms of degradation of Rhodamine B(RhB) in an aqueous solution. In addition, the possible photocatalytic mechanisms are discussed in this work. This strategy may be helpful for preparing other novel hybrid nanocomposites with well-defined structures and superior performances.展开更多
基金Project(51674301) supported by the National Natural Science Foundation of China
文摘Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.
文摘3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.
基金the National Natural Science Foundation of China (51472001, 21201001, 21571001)Anhui Provincial Natural Science Foundation (1208085QB25)+2 种基金the Ph.D. Start-up Fundthe Youth Back-bone Program of Anhui Universitythe 211 Project of Anhui University
文摘ZnO-Au_(25) nanocomposites were synthesized by doping Au_(25) nanoclusters into the porous Zn O nanospheres. It was notable that the ultrasmall Au_(25) nanoclusters possessed uniform sizes and fine dispersibility on the porous ZnO supports. A considerable correlation between the loading of Au_(25) nanoclusters and the photocatalytic activity was found. Compared with the pure ZnO nanospheres, the ZnO-Au_(25) nanocomposites exhibited more efficient photocatalytic activity in terms of degradation of Rhodamine B(RhB) in an aqueous solution. In addition, the possible photocatalytic mechanisms are discussed in this work. This strategy may be helpful for preparing other novel hybrid nanocomposites with well-defined structures and superior performances.