One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickne...One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.展开更多
基金Supported by Ministry of Science and Technology of China (2017YFA0700701, 2017YFA0700703)National Natural Science Foundation of China(52061025, 51701189)+1 种基金Sponsored by State Key Laboratory for Mechanical Behavior of Materials (20192104)Joint Fund of Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (18LHPY001)。
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2012CB932303),the National Natural Science Foundation of China (No.11074254 and No.51171176), Hundred Talent Program of Chinese Academy of Sciences, and the President Foundation of Hefei Institute of Physical Sciences.
文摘One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.