Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro...Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.展开更多
Cellulose nanocrystal was modified with poly(N,N-diethylaminomethyl methacrylate) to prepare an adsorbent containing amine groups for removing anionic dyes from waste water. The prepared adsorbent was characterized by...Cellulose nanocrystal was modified with poly(N,N-diethylaminomethyl methacrylate) to prepare an adsorbent containing amine groups for removing anionic dyes from waste water. The prepared adsorbent was characterized by Fourier-transform infrared spectrometry(FT-IR), X-ray photoelectron spectroscopy(XPS), and thermogravimetric analysis(TGA). The adsorption was affected by various factors, such as the contact time, adsorbent dosage, dye solution pH value, initial dye concentration, and ionic strength. The results revealed that amine functional groups mainly contribute to the adsorption of azo dyes(AO7). The adsorbent showed pseudo-secondorder adsorption kinetics, indicating that the dye molecules were chemisorbed on the adsorbent. The adsorption isotherm was found to fit better with the Langmuir isotherm model than with the Freundlich isotherm model.展开更多
Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. T...Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. This review mainly focused on the advanced applications of NC-based composites in hard TE including cartilage TE, bone TE, and dental TE, illustrated the processing methods for synthesizing scaffolds including electrospinning, freeze-drying, and 3 D printing, reviewed the current status of hard TE, and presented perspective on the future of TE technology.展开更多
Nanotechnology currently represents one of the most fascinating human discoveries. With creativity, nanotechnology looks for increasingly smaller spaces in nature to meet the needs and interests of the individuals and...Nanotechnology currently represents one of the most fascinating human discoveries. With creativity, nanotechnology looks for increasingly smaller spaces in nature to meet the needs and interests of the individuals and of the society. Considering that the researches aim to create techniques to move and combine atoms and molecules, a question arises, how will these atoms and molecules behave in the new arrangement. This is the great challenge and this article attempts to bring some benefits to the subiect. It also intends to bring the human sciences, particularly law, to the scenery of this scientific revolution. The lack of regulatory frameworks does not allow humans to search and produce anything without limits. Thus, human rights should be considered an ethical foundation for nanotechnology discoveries, as they represent the "rights" that, at least, humans should have respected.展开更多
The nanotechnology can provide radical and systematic innovation in architecture. The extent to which, and the manner in which architects, engineers, researchers, builders and producers embrace this innovation will de...The nanotechnology can provide radical and systematic innovation in architecture. The extent to which, and the manner in which architects, engineers, researchers, builders and producers embrace this innovation will determine the future of architectural operations. The introduction of new materials and technologies in architecture has always led to linguistic and typological modifications. It was true even in the past, let's just think of the consequences of the industrial revolution. This paper presents some nano-materials for architecture, that can contribute to the energy efficiency of buildings: self-repairing concrete, insulation nano-coating, photo-catalytic cements, anti-stain coating. If we consider new materials and new technologies as a determining factor for a new architecture, then the innovations in the field of concrete, glass, lighting, prompted by nanotechnology, will also influence the language of architecture.展开更多
Optical traps use focused laser beams to generate forces on targeted objects ranging in size from nanometers to micrometers. However, for their high coefficients of scattering and absorption, micrometer-sized metallic...Optical traps use focused laser beams to generate forces on targeted objects ranging in size from nanometers to micrometers. However, for their high coefficients of scattering and absorption, micrometer-sized metallic particles were deemed non-trappable in three dimensions using a single beam. This barrier is now removed. We demon- strate, both in theory and experiment, three-dimensional (3D) dynamic all-optical manipulations of micrometer- sized gold particles under high focusing conditions. The force of gravity is found to balance the positive axial optical force exerted on particles in an inverted optical tweezers system to form two trapping positions along the vertical direction. Both theoretical and experimental results confirm that stable 3D manipulations are achievable for these particles regardl for a variety of in-depth ess of beam polarization and wavelength. research requiting metallic particles. The present work opens up new opportunities .展开更多
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14C160003, LQ16C160002)the National Natural Science Foundation of China (Grant No.31100442)+2 种基金the Public Projects of Zhejiang Province (Grant No. 2017C31059)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01)521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310)
文摘Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.
基金supported by the Science and Technology Program of Guangzhou (No. 201704020038)the foundation of State Key Laboratory of Pulp and Paper Engineering (No. 2017QN01)National Natural Science Foundation of China (No. 31570569)
文摘Cellulose nanocrystal was modified with poly(N,N-diethylaminomethyl methacrylate) to prepare an adsorbent containing amine groups for removing anionic dyes from waste water. The prepared adsorbent was characterized by Fourier-transform infrared spectrometry(FT-IR), X-ray photoelectron spectroscopy(XPS), and thermogravimetric analysis(TGA). The adsorption was affected by various factors, such as the contact time, adsorbent dosage, dye solution pH value, initial dye concentration, and ionic strength. The results revealed that amine functional groups mainly contribute to the adsorption of azo dyes(AO7). The adsorbent showed pseudo-secondorder adsorption kinetics, indicating that the dye molecules were chemisorbed on the adsorbent. The adsorption isotherm was found to fit better with the Langmuir isotherm model than with the Freundlich isotherm model.
基金the special fund for Independent Innovation and Industry Development in the Core Area in Haidian District of Beijing (255-kjc020)
文摘Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. This review mainly focused on the advanced applications of NC-based composites in hard TE including cartilage TE, bone TE, and dental TE, illustrated the processing methods for synthesizing scaffolds including electrospinning, freeze-drying, and 3 D printing, reviewed the current status of hard TE, and presented perspective on the future of TE technology.
文摘Nanotechnology currently represents one of the most fascinating human discoveries. With creativity, nanotechnology looks for increasingly smaller spaces in nature to meet the needs and interests of the individuals and of the society. Considering that the researches aim to create techniques to move and combine atoms and molecules, a question arises, how will these atoms and molecules behave in the new arrangement. This is the great challenge and this article attempts to bring some benefits to the subiect. It also intends to bring the human sciences, particularly law, to the scenery of this scientific revolution. The lack of regulatory frameworks does not allow humans to search and produce anything without limits. Thus, human rights should be considered an ethical foundation for nanotechnology discoveries, as they represent the "rights" that, at least, humans should have respected.
文摘The nanotechnology can provide radical and systematic innovation in architecture. The extent to which, and the manner in which architects, engineers, researchers, builders and producers embrace this innovation will determine the future of architectural operations. The introduction of new materials and technologies in architecture has always led to linguistic and typological modifications. It was true even in the past, let's just think of the consequences of the industrial revolution. This paper presents some nano-materials for architecture, that can contribute to the energy efficiency of buildings: self-repairing concrete, insulation nano-coating, photo-catalytic cements, anti-stain coating. If we consider new materials and new technologies as a determining factor for a new architecture, then the innovations in the field of concrete, glass, lighting, prompted by nanotechnology, will also influence the language of architecture.
基金National Natural Science Foundation of China(NSFC)(91750205,61377052,61422506,61427819,61605117)National Key Basic Research Program of China(973)(2015CB352004)+3 种基金National Key Research and Development Program of China(2016YFC0102401)Leading Talents of Guangdong Province Program(00201505)Natural Science Foundation of Guangdong Province(2016A030312010,2016A030310063)Excellent Young Teacher Program of Guangdong Province(YQ2014151)
文摘Optical traps use focused laser beams to generate forces on targeted objects ranging in size from nanometers to micrometers. However, for their high coefficients of scattering and absorption, micrometer-sized metallic particles were deemed non-trappable in three dimensions using a single beam. This barrier is now removed. We demon- strate, both in theory and experiment, three-dimensional (3D) dynamic all-optical manipulations of micrometer- sized gold particles under high focusing conditions. The force of gravity is found to balance the positive axial optical force exerted on particles in an inverted optical tweezers system to form two trapping positions along the vertical direction. Both theoretical and experimental results confirm that stable 3D manipulations are achievable for these particles regardl for a variety of in-depth ess of beam polarization and wavelength. research requiting metallic particles. The present work opens up new opportunities .