As one of the first Partner Groups which were initiated to foster scientific exchange and interaction between the Max Planck Society (MPS) and the Chinese Academy of Sciences (CAS), the Partner Group led by Lu Ke was ...As one of the first Partner Groups which were initiated to foster scientific exchange and interaction between the Max Planck Society (MPS) and the Chinese Academy of Sciences (CAS), the Partner Group led by Lu Ke was established on April 1, 1999. During the past five years, the group has received substantial support from the CAS for equipment and from the MPS for personnel and travel expenses. Extensive and productive collaborations between the research staff and students of the Partner Group with several professors (departments) in the Max Planck Institute for Metals Research (MPI-MF) have led to significant advances in synthesis, mechanical properties, melting and superheating of nanostructured metals. The research is well recognized internationally and a substantial number of publications in high quality, peer-reviewed journals (including Science and Physical Review Letters) have resulted.At the MPI-MF, Ke Lu has collaborated with Manfred Ruhle and Reinhard Luck on crystallization studies, with Eric J. Mittemeijer on thermal stability and nanocrystal development, with Edward Arzt and Peter Gumbsch on computer simulation studies of melting and most recently with Huajian Gao and Helmut Dosch.展开更多
Elucidation of the CuOx-CeO2 interactions is of great interest and importance in understanding complex CuOx-CeO2 interfacial catalysis in various reactions. In the present work, we have investigated structures and cat...Elucidation of the CuOx-CeO2 interactions is of great interest and importance in understanding complex CuOx-CeO2 interfacial catalysis in various reactions. In the present work, we have investigated structures and catalytic activity in CO oxidation of CuOx species on CeO2 rods, cubes and polyhedra predominantly exposing {110}+{100}, {100} and {111} facets by the incipient wetness impregnation method with the lowest Cu loading of 0.025%. The structural evolution of CuOx species was found to depend on both the Cu loading and the CeO2 morphology. As the Cu loading increases, CuOx species are deposited preferentially on the surface defect of CeO2 and then aggregate and grow, accompanied by the formation of isolated Cu ions, CuOx clusters strongly/weakly interacting with the CeO2, highly dispersed Cu O nanoparticles, and large Cu O nanoparticles. The isolated Cu^+ species and CuOx clusters weakly interacting with the CeO2 were observed mainly on the O-terminated CeO2{100} facets. Meanwhile, more Cu(I) species are stabilized during CO reduction processes in CuOx/c-CeO2 catalysts than in CuOx/r-CeO2 and CuOx/p-CeO2 catalysts. The catalytic activities of various CuOx/CeO2 catalysts in CO oxidation vary with both the CuOx species and the CeO2 morphology. These results comprehensively elucidate the CuOx-CeO2 interactions and exemplify their morphology-dependence.展开更多
Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of...Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications.展开更多
Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybri...Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.展开更多
This review highlights work from the authors' laboratory on the recent development of seed-mediated growth method for noble metal nanocrystals. The seed-mediated growth method has become one of the most efficient ...This review highlights work from the authors' laboratory on the recent development of seed-mediated growth method for noble metal nanocrystals. The seed-mediated growth method has become one of the most efficient and versatile methods for synthe-sizing high-quality noble metal nanocrystals. The seed-mediated growth method can separate the nucleation and growth stages of metal nanocrystals, and thus provide better control over the size, size distribution, and crystallographic evolution of metal nanocrystals. Because of its high controllability, the seed-mediated growth method is especially promising in providing mechanistic insights into the growth mechanisms of noble metal nanocrystals. In this review, the thermodynamic and kinetic parameters for the nucleation and growth of noble metal nanocrystals are systematically summarized. Mechanistic understanding of these parameters is provided. These studies provide useful guidelines for the rational design and synthesis of novel noble metal nanocrystals with high quality.展开更多
Direct integration of high-mobility III-V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS perform...Direct integration of high-mobility III-V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III-V segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.展开更多
文摘As one of the first Partner Groups which were initiated to foster scientific exchange and interaction between the Max Planck Society (MPS) and the Chinese Academy of Sciences (CAS), the Partner Group led by Lu Ke was established on April 1, 1999. During the past five years, the group has received substantial support from the CAS for equipment and from the MPS for personnel and travel expenses. Extensive and productive collaborations between the research staff and students of the Partner Group with several professors (departments) in the Max Planck Institute for Metals Research (MPI-MF) have led to significant advances in synthesis, mechanical properties, melting and superheating of nanostructured metals. The research is well recognized internationally and a substantial number of publications in high quality, peer-reviewed journals (including Science and Physical Review Letters) have resulted.At the MPI-MF, Ke Lu has collaborated with Manfred Ruhle and Reinhard Luck on crystallization studies, with Eric J. Mittemeijer on thermal stability and nanocrystal development, with Edward Arzt and Peter Gumbsch on computer simulation studies of melting and most recently with Huajian Gao and Helmut Dosch.
文摘Elucidation of the CuOx-CeO2 interactions is of great interest and importance in understanding complex CuOx-CeO2 interfacial catalysis in various reactions. In the present work, we have investigated structures and catalytic activity in CO oxidation of CuOx species on CeO2 rods, cubes and polyhedra predominantly exposing {110}+{100}, {100} and {111} facets by the incipient wetness impregnation method with the lowest Cu loading of 0.025%. The structural evolution of CuOx species was found to depend on both the Cu loading and the CeO2 morphology. As the Cu loading increases, CuOx species are deposited preferentially on the surface defect of CeO2 and then aggregate and grow, accompanied by the formation of isolated Cu ions, CuOx clusters strongly/weakly interacting with the CeO2, highly dispersed Cu O nanoparticles, and large Cu O nanoparticles. The isolated Cu^+ species and CuOx clusters weakly interacting with the CeO2 were observed mainly on the O-terminated CeO2{100} facets. Meanwhile, more Cu(I) species are stabilized during CO reduction processes in CuOx/c-CeO2 catalysts than in CuOx/r-CeO2 and CuOx/p-CeO2 catalysts. The catalytic activities of various CuOx/CeO2 catalysts in CO oxidation vary with both the CuOx species and the CeO2 morphology. These results comprehensively elucidate the CuOx-CeO2 interactions and exemplify their morphology-dependence.
文摘Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 ℃ in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications.
基金supported by the National Natural Science Foundation of China(51232003,21473089,21373108,21173115)the National Basic Research Program of China(2013CB932902)+2 种基金Jiangsu Province Science and Technology Support Project(BE2012159)Suzhou Science and Technology Plan projects(ZXG2013025)National Science Fund for Talent Training in Basic Science(J1103310)
文摘Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.
基金supported by the National Natural Science Foundation of China (21175126)
文摘This review highlights work from the authors' laboratory on the recent development of seed-mediated growth method for noble metal nanocrystals. The seed-mediated growth method has become one of the most efficient and versatile methods for synthe-sizing high-quality noble metal nanocrystals. The seed-mediated growth method can separate the nucleation and growth stages of metal nanocrystals, and thus provide better control over the size, size distribution, and crystallographic evolution of metal nanocrystals. Because of its high controllability, the seed-mediated growth method is especially promising in providing mechanistic insights into the growth mechanisms of noble metal nanocrystals. In this review, the thermodynamic and kinetic parameters for the nucleation and growth of noble metal nanocrystals are systematically summarized. Mechanistic understanding of these parameters is provided. These studies provide useful guidelines for the rational design and synthesis of novel noble metal nanocrystals with high quality.
文摘Direct integration of high-mobility III-V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III-V segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.