该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(...该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(2),填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-Si Ox:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-Si Ox:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-Si Ox:H窗口层的电池相比,nc-Si:H/nc-Si Ox:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。展开更多
Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. ...Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.展开更多
In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical res...In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (ll)-doped dried Hydrogels made from a sodium metasilicate solution doped with silica gels prepared in a high magnetic field such as B = 10 T. lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallinity can be controlled through the strength of magnetic field B applied during gel preparation. Specific skills are not required to control the strength of magnetic field.展开更多
Mesoporous nanocrystal clusters of anatase TiO2 with large surface area and enhanced photocatalytic activity have been successfully synthesized. The synthesis involves the self-assembly of hydrophobic TiO2 nanocrystal...Mesoporous nanocrystal clusters of anatase TiO2 with large surface area and enhanced photocatalytic activity have been successfully synthesized. The synthesis involves the self-assembly of hydrophobic TiO2 nanocrystals into submicron clusters, coating of these clusters with a silica layer, thermal treatment to remove organic ligands and improve the crystallinity of the clusters, and finally removing silica to expose the mesoporous catalysts. With the help of the silica coating, the clusters not only maintain their small grain size but also keep their mesoporous structure after calcination at high temperatures (with BET surface area as high as 277 m2/g). The etching of SiO2 also results in the clusters having high dispersity in water. We have been able to identify the optimal calcination temperature to produce TiO2 nanocrystal clusters that possess both high crystallinity and large surface area, and therefore show excellent catalytic efficiency in the decomposition of organic molecules under illumination by UV light. Convenient doping with nitrogen converts these nanocrystal clusters into active photocatalysts in both visible light and natural sunlight. The strategy of forming well-defined mesoporous clusters using nanocrystals promises a versatile and useful method for designing photocatalysts with enhanced activity and stability.展开更多
A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitch...A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions.展开更多
基金National Natural Science Foundation of China(60336010)
文摘Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.
文摘In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (ll)-doped dried Hydrogels made from a sodium metasilicate solution doped with silica gels prepared in a high magnetic field such as B = 10 T. lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallinity can be controlled through the strength of magnetic field B applied during gel preparation. Specific skills are not required to control the strength of magnetic field.
文摘Mesoporous nanocrystal clusters of anatase TiO2 with large surface area and enhanced photocatalytic activity have been successfully synthesized. The synthesis involves the self-assembly of hydrophobic TiO2 nanocrystals into submicron clusters, coating of these clusters with a silica layer, thermal treatment to remove organic ligands and improve the crystallinity of the clusters, and finally removing silica to expose the mesoporous catalysts. With the help of the silica coating, the clusters not only maintain their small grain size but also keep their mesoporous structure after calcination at high temperatures (with BET surface area as high as 277 m2/g). The etching of SiO2 also results in the clusters having high dispersity in water. We have been able to identify the optimal calcination temperature to produce TiO2 nanocrystal clusters that possess both high crystallinity and large surface area, and therefore show excellent catalytic efficiency in the decomposition of organic molecules under illumination by UV light. Convenient doping with nitrogen converts these nanocrystal clusters into active photocatalysts in both visible light and natural sunlight. The strategy of forming well-defined mesoporous clusters using nanocrystals promises a versatile and useful method for designing photocatalysts with enhanced activity and stability.
文摘A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions.