Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor de...Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as (67.0±(6.9) GPa) on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect.展开更多
An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the hel...An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate, α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.展开更多
文摘Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as (67.0±(6.9) GPa) on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CB707601, 2011CB707605, and 2012CB934102), the National Science and Technology Supporting Program (No. 2012BAJ11B01), the Creative Research of National Natural Science Foundation of China (No. 61021064), and the National Natural Science Foundation of China (Nos. 60936001, 91123037 and 81201358).
文摘An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate, α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.