期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
纳米润滑油节能抗磨添加剂研制成功
1
《化工中间体(科技.产业版)》 2004年第3期58-58,共1页
关键词 纳米材料颗粒 润滑油 节能抗磨添加剂 有机无机复合铜颗粒
下载PDF
Effects of Au-Ce strong interactions on catalytic activity of Au/CeO_2/3DOM Al_2O_3 catalyst for soot combustion under loose contact conditions 被引量:4
2
作者 靳保芳 韦岳长 +3 位作者 赵震 刘坚 姜桂元 段爱军 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期923-933,共11页
Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray dif... Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively. 展开更多
关键词 Three-dimensionally ordered macroporous material Gold nanoparticle CERIA Soot combustion Synergistic effect
下载PDF
Effect of TiC nanoparticle on friction and wear properties of TiC/AA2219 nanocomposites and its strengthening mechanism 被引量:4
3
作者 YANG Yi-long ZHANG Yun +2 位作者 ZHANG Hao-ming LIU Xu-he LI Xiao-qian 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期767-779,共13页
TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were stu... TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive. 展开更多
关键词 TiC/AA2219 nanocomposite TiC nanoparticle wear properties HARDNESS wear mechanism
下载PDF
Microstructure and properties of alumina-silicon carbide nanocomposites fabricated by pressureless sintering and post hot-isostatic pressing 被引量:4
4
作者 Young-Keun JEONG Koichi NIIHARA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期1-6,共6页
A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing proc... A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process. 展开更多
关键词 NANOCOMPOSITE pressureless sintering fracture strength
下载PDF
Improvement of high-temperature strength of 6061 Al matrix composite reinforced by dual-phased nano-AlN and submicron-Al_(2)O_(3)particles 被引量:3
5
作者 Ke-wei XIE Jin-feng NIE +2 位作者 Kai-qi HU Xia MA Xiang-fa LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3197-3211,共15页
Nano-AlN and submicron-Al_(2)O_(3) particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength.According to the SEM and TEM characterization,nano-AlN and submicron-Al_... Nano-AlN and submicron-Al_(2)O_(3) particles were simultaneously utilized in a 6061 Al matrix composite to improve the high-temperature strength.According to the SEM and TEM characterization,nano-AlN and submicron-Al_(2)O_(3) particles are uniformly distributed in the Al matrix.Brinell hardness results indicate that different from the traditional 6061 Al matrix alloy,the aging kinetics of the composite is obviously accelerated by the reinforcement particles.The T6-treated composite exhibits excellent tensile properties at both room temperature and elevated temperature.Especially at 350℃,the T6-treated composite not only has a high yield strength of 121 MPa and ultimate tensile strength of 128 MPa,but also exhibits a large elongation of 11.6%.Different strengthening mechanisms of nano-AlN and submicron-Al_(2)O_(3) particles were also discussed in detail. 展开更多
关键词 6061 Al matrix composite nano-AlN particles submicron-Al_(2)O_(3)particles high-temperature strength
下载PDF
Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH_(2) for hydrogen storage 被引量:7
6
作者 Yan CHEN Hao-yu ZHANG +4 位作者 Fu-ying WU Ze SUN Jia-guang ZHENG Liu-ting ZHANG Li-xin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3469-3477,共9页
Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was de... Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was decreased to 175℃ and 6.7,6.5 and 6.1 wt.%hydrogen could be released within 5,10 and 25 min at 300,275 and 250℃,respectively.Besides,the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.%hydrogen within 30 min at low temperature of 50℃.The hydrogenation activation energy of MgH_(2) was reduced from(72.5±2.7)to(18.8±0.2)kJ/mol after doping with 10 wt.%nano-Mn.In addition,the MgH_(2)+10 wt.%nano-Mn composite exhibited superior cyclic property,maintaining 92%initial capacity after 20 cycles. 展开更多
关键词 hydrogen storage material magnesium hydride Mn nanoparticles catalytic mechanism REVERSIBILITY
下载PDF
Facile synthesis of porous LiNiVO_4 powder as high-voltage cathode material for lithium-ion batteries 被引量:1
7
作者 Mu-lan QIN Wan-min LIU +1 位作者 Shu-quan LIANG An-qiang PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3232-3237,共6页
Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scann... Porous LiNiVO4 powder was synthesized via solution combustion synthesis method using lithium nitrate, nickel nitrate,ammonium metavanadate and citric acid as raw materials. Thermogravimetry (TG) and differential scanning calorimetry (DSC),X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) were used toevaluate the structures and morphologies of samples. The results show that the calcination temperature has significant effect on thecrystallinity and morphologies. Pure LiNiVO4 flaky nanoparticles with a mean particle size around 20 nm can be readily prepared bycalcining the precursor in air at 500 °C for 2 h. As a cathode material for lithium-ion batteries, the porous LiNiVO4 powder exhibits agood structural reversibility. 展开更多
关键词 lithium-ion battery LiNiVO4 cathode material solution combustion synthesis NANOPARTICLE
下载PDF
Si_3N_4/Ni nanocomposite formed by electroplating: Effect of average size of nanoparticulates 被引量:2
8
作者 M.A.KHAZRAYIE A.R.S.AGHDAM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1017-1023,共7页
Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective facto... Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective factors for fabrication of nanocomposite coatings were fixed for better studying the effect of the average size of nanoparticulates.The effects of the different average size of nanometric particulates(ASNP)from submicron scale(less than 1μm)to nanometric scale(less than 10 nm)were studied.The nanostructures of surfaces were examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and atomic force microscopy(AFM).Corrosion rates of the coatings were determined using the Tafel polarization test.It is seen that decreasing the ASNP will lead to lower corrosion current densities;however,in some cases,pitting phenomena are observed.The roughness illustrates a minimum level while the distribution of nanometric particulates is more uniform by decreasing the ASNP.The effects of pulsed current on electrodeposition(frequency,duty cycle)and concentration of nanoparticulates in electrodeposition bath on trend of obtained curves have been discussed.Response surface methodology was applied for optimizing the effective operating conditions of coatings.The levels studied were frequency range between 1 000 and 9 000 Hz,duty cycle between 10%and 90%and concentration of nanoparticulates of 10-90 g/L. 展开更多
关键词 corrosion ELECTRODEPOSITION NANOCOMPOSITE NANOSTRUCTURE nano diamond
下载PDF
Simulation Study of Electron Beam Induced Surface Plasmon Excitation at Nanoparticles
9
作者 Zhe Zheng Bo Da +1 位作者 Ke-jun Zhang Ze-jun Ding 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期655-660,735,共7页
Phenomenon of localized surface plasmon excitation at nanostructured materials has attracted much attention in recent decades for their wide applications in single molecule detection,surface-enhanced Raman spectroscop... Phenomenon of localized surface plasmon excitation at nanostructured materials has attracted much attention in recent decades for their wide applications in single molecule detection,surface-enhanced Raman spectroscopy and nano-plasmonics.In addition to the excitation by external light field,an electron beam can also induce the local surface plasmon excitation.Nowadays,electron energy loss spectroscopy(EELS)technique has been increasingly employed in experiment to investigate the surface excitation characteristics of metallic nanoparticles.However,a present theoretical analysis tool for electromagnetic analysis based on the discrete dipole approximation(DDA)method can only treat the case of excitation by light field.In this work we extend the DDA method for the calculation of EELS spectrum for arbitary nanostructured materials.We have simulated EELS spectra for different incident locations of an electron beam on a single silver nanoparticle,the simulated results agree with an experimental measurement very well.The present method then provides a computation tool for study of the local surface plasmon excitation of metallic nanoparticles induced by an electron beam. 展开更多
关键词 Surface plasmon excitation Nanostructured materials NANOPARTICLES Electron energy loss spectroscopy
下载PDF
Spectroscopic Investigated Interaction between Silver Nanocomposites Based of Poly-N-Vinylpyrrolidone and Doxorubicin for Drug Delivering
10
作者 Mammedova Samira Mirali Tapdiqov Shamo Zokhrab Humbatova Seadat Faiq Zeynalov Nizami Allahverdi 《Journal of Chemistry and Chemical Engineering》 2014年第8期800-804,共5页
It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the au... It is investigated to synthesis of Ag nanoparticles by presence the synthetic polymer poly-N-vinylpyrrolidone. It was determined with X-ray analyses that the size ofnanoparticles changed between 18-42 nm. Then, the authors studied sorption process of doxorubicine by silver nanocomposites and investigated chemical interaction between antibiotic and poly-N-vinyplyrrolidone with UV-VIS (ultraviolet visible) and FT-IR (Fourier transform infrared) spectroscopy. It is shown that formation of the nanoparticles doxorubicin complex mainly occurs in the 190-208 nm wavelengths on polymers 〉C=O functional groups. Also, the four main absorbing peaks of doxorubicin--234, 253, 288 and 495 nm undergo chemists shift (A2 = 12-15 nm). When increases to pH = 7-8, the size of Ag-doxorubicin particles decreases. It is determined that the 410 nm absorption peak of Ag nanoparticles undergo 409-418 nm interval and the 3,500, 1,600, 1,645 and 1,190 sm^-1 absorption lines of PVPr (polymer poly-N-vinylpyrrolidone) slightly altered. 展开更多
关键词 Silver nanoparticles doxorubicine poly-N-vinylpyrrolidone anticancer.
下载PDF
Characteristics and properties of SiO_2-Al_2O_3/EP-PU composite 被引量:3
11
作者 陈宇飞 代起望 +1 位作者 林彩威 冯涛 《Journal of Central South University》 SCIE EI CAS 2014年第11期4076-4083,共8页
SiO2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling age... SiO2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling agents KH-560 and KH550, respectively. EP-PU was used as matrix, PU as toughening agent, Si O2-Al2O3 as filled and MTHPA as curing agent. The mass ratio of PU was 30% in this system. The chemical structure of the products was confirmed by FT-IR measurements, the morphological structure of fracture surface and the surface of the hybrid materials were observed by scanning electron microscope(SEM) and transmission electron microscope(TEM), and shearing strength and breakdown field were measured, respectively. When the mass fraction of inorganic component was 10% and the mass ratio of Si O2 to Al2O3 was 4.5:5.5, shearing strength of Si O2-Al2O3/EP-PU was 28.5 MPa and breakdown field was 15 k V/mm, the data could meet the property requirement of insulating material. 展开更多
关键词 nano-SiO2 nano-Al2O3 epoxy resin polyurethane property
下载PDF
Effect of Fe_2O_3/SiO_2 ratio on maghemite-silica particulate nanocomposites
12
作者 ANG Bee Chin YAACOB Iskandar Idris NURDIN Irwan 《Journal of Central South University》 SCIE EI CAS 2013年第11期2954-2959,共6页
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites ... Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth. 展开更多
关键词 maghemite nanoparticles NANOCOMPOSITES SOL-GEL SILICA
下载PDF
Synthesis and Characterization of Aluminum/Carbon Nanotubes Composites: Study of Interfacial Interaction
13
作者 Mananna Barbeno Pasquale Barone +3 位作者 Valentino Pingitore Assunta Bonanno Mariano Davoli FangXu 《Journal of Chemistry and Chemical Engineering》 2013年第4期313-318,共6页
Abstract: In this work, the authors present a study of growth and characterization of composite based on AI and CNT (carbon nanotubes. The composites were prepared by a chemical mixing method and characterized by SE... Abstract: In this work, the authors present a study of growth and characterization of composite based on AI and CNT (carbon nanotubes. The composites were prepared by a chemical mixing method and characterized by SEM analysis, energy dispersed X-ray measurements, X-ray photoelectron spectroscopy and cathodoluminescence spectroscopy. The analysis showed that the composites are formed by macro-cluster of aluminum oxide on a network of CNT without formation of chemical bonds at interface between particles. The results are compared with those obtained for a sample of CNT with AI traces (〈 0.5%). They show that only the presence of metal traces changes the nanotubes optical properties, with a luminescence signal centered at about 380 nm. These luminescence signals are caused by the adhesion between CNT and AI micro-clusters that promote the formation of band gap with some local energy levels. 展开更多
关键词 Carbon nanotubes ALUMINUM interface structure metal-CNT composite.
下载PDF
Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries 被引量:10
14
作者 Huilong Fei Zhiwei Peng +5 位作者 Lei Li Yang Yang Wei Lu Errol L. G. Samuel Xiujun Fan James M. Tour 《Nano Research》 SCIE EI CAS CSCD 2014年第4期502-510,共9页
We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio ar... We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability. 展开更多
关键词 Fe2O3 nanoparticles carbon coating graphene chemical vapor deposition(CVD) anode lithium ion batteries
原文传递
Structure development of carbon-based solar-driven water evaporation systems 被引量:13
15
作者 Wen He Lei Zhou +3 位作者 Miao Wang Yang Cao Xuemei Chen Xu Hou 《Science Bulletin》 SCIE EI CSCD 2021年第14期1472-1483,M0004,共13页
Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation... Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future. 展开更多
关键词 Carbon-based evaporator Solar-driven Photothermal conversion Desalination Structure development
原文传递
Embedding tin disulfide nanoparticles in twodimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries 被引量:5
16
作者 Na Zhou Wen-Da Dong +9 位作者 Yun-Jing Zhang Di Wang Liang Wu Lang Wang Zhi-Yi Hu Jing Liu Hemdan S.H.Mohamed Yu Li Li-Hua Chen Bao-Lian Su 《Science China Materials》 SCIE EI CAS CSCD 2021年第11期2697-2709,共13页
Lithium-sulfur(Li-S)batteries have attracted significant attention for their high specific capacity,non-toxic and harmless advantages.However,the shuttle effect limits their development.In this work,small-sized tin di... Lithium-sulfur(Li-S)batteries have attracted significant attention for their high specific capacity,non-toxic and harmless advantages.However,the shuttle effect limits their development.In this work,small-sized tin disulfide(SnS_(2))nanoparticles are embedded between interlayers of twodimensional porous carbon nanosheets(PCNs),forming a multi-functional nanocomposite(PCN-SnS_(2))as a cathode carrier for Li-S batteries.The graphitized carbon nanosheets improve the overall conductivity of the electrode,and the abundant pores not only facilitate ion transfer and electrolyte permeation,but also buffer the volume change during the charge and discharge process to ensure the integrity of the electrode material.More importantly,the physical confinement of PCN,as well as the strong chemical adsorption and catalytic reaction of small SnS_(2)nanoparticles,synergistically reduce the shuttle effect of polysulfides.The interaction between a porous layered structure and physical-chemical confinement gives the PCN-SnS_(2)-S electrode high electrochemical performance.Even at a high rate of 2 C,a discharge capacity of 650 mA h g^(-1)is maintained after 150 cycles,underscoring the positive results of SnS_(2)-based materials for Li-S batteries.The galvanostatic intermittent titration technique results further confirm that the PCN-SnS_(2)-S electrode has a high Li+transmission rate,which reduces the activation barrier and improves the electrochemical reaction kinetics.This work provides strong evidence that reducing the size of SnS_(2)nanostructures is beneficial for capturing and reacting with polysulfides to alleviate their shuttle effect in Li-S batteries. 展开更多
关键词 tin disulfide nanoparticles porous carbon nanosheets lithium-sulfur batteries galvanostatic intermittent titration technique density functional theory
原文传递
Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries 被引量:14
17
作者 Ning Zhang Yongchang Liu +3 位作者 Yanying Lu Xiaopeng Han Fangyi Cheng Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2015年第10期3384-3393,共10页
An aerosol spray pyrolysis technique is used to synthesize a spherical nano-Sb@C composite. Instrumental analyses reveal that the micro-nanostructured composite with an optimized Sb content of 68.8 wt% is composed of ... An aerosol spray pyrolysis technique is used to synthesize a spherical nano-Sb@C composite. Instrumental analyses reveal that the micro-nanostructured composite with an optimized Sb content of 68.8 wt% is composed of ultra-small Sb nanoparticles (10 nm) uniformly embedded within a spherical porous C matrix (denoted as 10-Sb@C). The content and size of Sb can be controlled by altering the concentration of the precursor. As an anode material of sodium-ion batteries, 10-Sb@C provides a discharge capacity of 435 mAh.g^-1 in the second cycle and 385 mAh.g^-1 (a capacity retention of 88.5%) after 500 cycles at 100 mAh.g^-1. In particular, the electrode exhibits an excellent rate capability (355, 324, and 270 mAh.g^-1 at 1,000, 2,000, and 4,000 mAh.g^-1, respectively). Such a high-rate performance for the Sb-C anode has rarely been reported. The remarkable electrochemical behavior of 10-Sb@C is attributed to the synergetic effects of ultra-small Sb nanoparticles with an uniform distribution and a porous C framework, which can effectively alleviate the stress associated with a large volume change and suppress the agglomeration of the pulverized nanoparticles during prolonged charge-discharge cycling. 展开更多
关键词 ANTIMONY micro-nanostructuredcomposite anode material sodium-ion batteries
原文传递
Hollow micro- and nano-particles by gas foaming 被引量:1
18
作者 Silvia Orsi Ernesto Di Maio +1 位作者 Salvatore lannace Paolo A. Netti 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1018-1026,共9页
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly ... This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows. 展开更多
关键词 HOLLOW NANOPARTICLES MICROPARTICLES gas foaming
原文传递
Highly efficient solar steam generation of low cost TiN/bio-carbon foam 被引量:11
19
作者 Dongfang Guo Xiuchun Yang 《Science China Materials》 SCIE EI CSCD 2019年第5期711-718,共8页
The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles(NPs) on a piece of carbonized wood as a new type of double layer material for solar ... The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles(NPs) on a piece of carbonized wood as a new type of double layer material for solar water evaporation. TiN NPs possess better stability, lower cost,lower toxicity and wider and stronger optical absorption than the previously reported photo-thermal conversion(PTC)materials, such as plasmonic metals, carbon-based materials and semiconductor nanomaterials. The amounts of TiN NPs and the thicknesses and types of the substrates have important influences on water evaporation rates and solar-vapor conversion efficiency. A solar-vapor conversion efficiency of 92.5%, the highest efficiency in the reported wood-based PTC materials, is obtained under 1-sun simulated solar irradiation.In addition, the TBCF hybrid materials(TiN NPs on biocarbon foam) exhibit good reusability. 展开更多
关键词 TiN nanoparticles bio-carbon foam double layer structure photo-thermal conversion solar-vapor conversion efficiency
原文传递
Gold nanomaterials for treatment of metastatic cancer 被引量:2
20
作者 Bing Feng Fangyuan Zhou +3 位作者 Dangge Wang Zhiai Xu Haijun Yu Yaping Li 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第8期984-990,共7页
Nanomedicine has shown good potentials for cancer diagnosis and treatment since the last decades. Among the various nanoparticles exploited for cancer management so far, gold nanomaterials(e.g., spherical gold nanopar... Nanomedicine has shown good potentials for cancer diagnosis and treatment since the last decades. Among the various nanoparticles exploited for cancer management so far, gold nanomaterials(e.g., spherical gold nanoparticles and gold nanorods)were extensively investigated due to their unique chemo-physical properties. We herein summarize the emerging application and discuss the challenges of using gold nanomaterials for therapy of metastatic cancer. 展开更多
关键词 gold nanomaterials cancer metastasis ANGIOGENESIS EMT photothermal therapy CHEMOTHERAPY
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部