Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand t...Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.展开更多
Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst...Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst for visible‐light‐induced hydrogen(H2)generation.However,the severe photocorrosion,high overpotential,rapid charge recombination,and sluggish surface reaction kinetics drastically hinder its practical application in water splitting.Herein,uniform zinc cadmium sulfide(Zn_(0.5)Cd_(0.5)S)nanoparticles were anchored on ultrathin Ni(OH)_(2)nanosheets via a facile solution‐phase approach to form an intimate two‐dimensional(2D)/zero‐dimensional(0D)heterojunction.Under visible light irradiation,the 7%Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S composite exhibited the highest H2 production rate of 6.87 mmol·h^(–1)·g^(–1)with an apparent quantum yield of 16.8%at 420 nm,which is almost 43 times higher than that of pristine Zn_(0.5)Cd_(0.5)S and considerably higher than that of the Pt/Zn_(0.5)Cd_(0.5)S photocatalyst.The high photoactivity of the 2D/0D Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S heterojunction can be ascribed to its unique and robust structure,wherein the ultrathin Ni(OH)_(2)nanosheets not only provide an excellent platform for the incorporation of Zn_(0.5)Cd_(0.5)S nanoparticles but also serve as an effective cocatalyst to promote photoinduced electron transfer and offer more active sites for photocatalytic H_(2) generation.This work paves the way toward the development of versatile,low‐cost,and highly efficient 2D/0D heterojunction photocatalysts for solar energy conversion.展开更多
基金was supported by the National Natural Science Foundation of China(91545113,21703050)the China Postdoctoral Science Foundation(2017M610363,2018T110584)+2 种基金Shell Global Solutions International B.V.(PT71423,PT74557)the Fok Ying Tong Education Foundation(131015)the Science&Technology Program of Ningbo(2017C50014)~~
文摘Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
文摘Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst for visible‐light‐induced hydrogen(H2)generation.However,the severe photocorrosion,high overpotential,rapid charge recombination,and sluggish surface reaction kinetics drastically hinder its practical application in water splitting.Herein,uniform zinc cadmium sulfide(Zn_(0.5)Cd_(0.5)S)nanoparticles were anchored on ultrathin Ni(OH)_(2)nanosheets via a facile solution‐phase approach to form an intimate two‐dimensional(2D)/zero‐dimensional(0D)heterojunction.Under visible light irradiation,the 7%Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S composite exhibited the highest H2 production rate of 6.87 mmol·h^(–1)·g^(–1)with an apparent quantum yield of 16.8%at 420 nm,which is almost 43 times higher than that of pristine Zn_(0.5)Cd_(0.5)S and considerably higher than that of the Pt/Zn_(0.5)Cd_(0.5)S photocatalyst.The high photoactivity of the 2D/0D Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S heterojunction can be ascribed to its unique and robust structure,wherein the ultrathin Ni(OH)_(2)nanosheets not only provide an excellent platform for the incorporation of Zn_(0.5)Cd_(0.5)S nanoparticles but also serve as an effective cocatalyst to promote photoinduced electron transfer and offer more active sites for photocatalytic H_(2) generation.This work paves the way toward the development of versatile,low‐cost,and highly efficient 2D/0D heterojunction photocatalysts for solar energy conversion.