期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度信念网络的纳米流体热导率预测方法
1
作者 孙斌 乔丛 +1 位作者 杨迪 李洪伟 《东北电力大学学报》 2019年第1期41-48,共8页
纳米流体因具有较好的传热性能而被认为是未来极具发展前景的强化传热工质,为了提高纳米流体热导率预测的精确性,依据深度学习理论建立了基于DBN的纳米流体热导率预测模型.对模型进行训练和微调,可自动提取纳米流体热导率自身的发展规律... 纳米流体因具有较好的传热性能而被认为是未来极具发展前景的强化传热工质,为了提高纳米流体热导率预测的精确性,依据深度学习理论建立了基于DBN的纳米流体热导率预测模型.对模型进行训练和微调,可自动提取纳米流体热导率自身的发展规律,逐层激活纳米流体各影响因素的强相关性.将深度信念网络模型的仿真结果与基于BP神经网络、基于SVM纳米流体热导率预测模型的仿真结果及实验数据进行对比,结果表明:DBN预测模型克服了传统神经网络容易陷入局部最优、训练时间长及函数拟合度不高等缺点,具有预测精度高,预测速度快的优点. 展开更多
关键词 纳米流体热导率 深度信念网络 限制波尔兹曼机 BP神经网络
下载PDF
Effective thermal and electrical conductivity of graphite nanoplatelet composites 被引量:1
2
作者 周晓锋 张小松 周建成 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期158-161,共4页
The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets (GNPs) composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electri... The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets (GNPs) composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electrical conductivity enhancements of GNP-oil nanofluids and GNP-polyimide composites are measured. By taking into account the particle shape, the volume fraction, the thermal conductivity of filling particles and the base fluids, the thermal and electrical conductivity enhancements of GNP nanofluids are theoretically predicted by the generalized effective medium theory. Both the nonlinear dependence of effective thermal conductivity on the GNP volume fraction in nanofhiids and the very low percolation threshold for GNP-polyimide composites are well predicted. The theoretical predications are found to be in reasonably good agreement with the experimental data. The generalized effective medium theory can be used for predicting the thermal and electrical properties of GNP composites and it is still available for most of the thermal/electrical modifications in two-phase composites. 展开更多
关键词 graphite nanoplatelet nanofluids THERMALCONDUCTIVITY electrical conductivity percolation threshold
下载PDF
Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders 被引量:8
3
作者 Mehdi MIRZAEYAN Davood TOGHRAIE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1976-1999,共24页
In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 a... In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities. 展开更多
关键词 porous horizontal concentric cylinders nanofluid flow PERMEABILITY heat transfer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部