为了解环境纳米颗粒(ENPs)的研究进展和趋势,以Web of Science核心数据库中ENPs的研究论文为数据源,通过CiteSpace与VOS viewer,对年发文数量、国家、机构、作者等进行了计量分析。结果显示:在2000~2020年,ENPs相关研究论文发文量在200...为了解环境纳米颗粒(ENPs)的研究进展和趋势,以Web of Science核心数据库中ENPs的研究论文为数据源,通过CiteSpace与VOS viewer,对年发文数量、国家、机构、作者等进行了计量分析。结果显示:在2000~2020年,ENPs相关研究论文发文量在2008年后开始快速增长,且总被引频次持续增长,说明有关研究成果得以认知的范围和深度逐渐扩大与深入;美国是发文总数最多的国家,共发表文章149篇,中国位居第二;美国总被引频次为第一位,这表明中国论文在ENPs领域的影响力还有待提高;发文机构中以中国科学院发文量最多。ENPs的研究热点集中在环境毒理、环境稳定性、纳米颗粒的迁移转化、暴露与氧化应激等方面。未来应更加关注ENPs与环境因素的交互作用以及ENPs与污染物的交互作用对ENPs的环境毒性的影响。展开更多
We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nano...We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.展开更多
A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to...A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to collect the organic volatile contaminants in the vacuum environment and then eluted by methanol. The eluent is analyzed by gas chromatography ( GC ) and gas chromatography-mass spectrometry (GC/MS) to identify the composition of the organic contaminants. The nanofiber is composed of polystyrene and it is prepared by electrospinning. Before being used, the nanofiber is processed by ultrasound in ethanol for 15 min to remove some impurities and dried in an oven at 60 ℃, and then 10 mg of the nanofiber is wrapped in a thermoplastic polyester fabric pocket. The vacuum pump oil and di-iso-decyl phthalate (DIDP) are chosen as absorbates to test the absorbent performance of the nanofiber in the vacuum environment. Experiments are performed under the pressure of 10-4 and 103 Pa, respectively. It is shown that the nanofiber-based enrichment device can be used to adsorb the organic contaminants in the vacuum simulation environment.展开更多
文摘为了解环境纳米颗粒(ENPs)的研究进展和趋势,以Web of Science核心数据库中ENPs的研究论文为数据源,通过CiteSpace与VOS viewer,对年发文数量、国家、机构、作者等进行了计量分析。结果显示:在2000~2020年,ENPs相关研究论文发文量在2008年后开始快速增长,且总被引频次持续增长,说明有关研究成果得以认知的范围和深度逐渐扩大与深入;美国是发文总数最多的国家,共发表文章149篇,中国位居第二;美国总被引频次为第一位,这表明中国论文在ENPs领域的影响力还有待提高;发文机构中以中国科学院发文量最多。ENPs的研究热点集中在环境毒理、环境稳定性、纳米颗粒的迁移转化、暴露与氧化应激等方面。未来应更加关注ENPs与环境因素的交互作用以及ENPs与污染物的交互作用对ENPs的环境毒性的影响。
基金supported by the National Natural Science Foundation of China (21471122)Graduate Student Education Innovation Fundation and President Foundation of Wuhan Institute of Technology (CX2015147, 2016062)~~
文摘We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.
基金The National Basic Research Program of China(973 Program)(No.2012CB933302)the National Natural Science Foundation of China(No.81172720)+2 种基金the Science and Technology Pillar Program of Jiangsu Province(No.BE2010088)the Municipal Science and Technology Project of Suzhou City(No.SYN201006,SG201028)the Undergraduate Student Scientific Training Program of Southeast University(No.T12261005)
文摘A novel method for sampling and enriching organic volatile contaminants in the vacuum environment combined with qualitative analysis based on the vacuum simulation test is proposed. A nanofiber is used as absorbent to collect the organic volatile contaminants in the vacuum environment and then eluted by methanol. The eluent is analyzed by gas chromatography ( GC ) and gas chromatography-mass spectrometry (GC/MS) to identify the composition of the organic contaminants. The nanofiber is composed of polystyrene and it is prepared by electrospinning. Before being used, the nanofiber is processed by ultrasound in ethanol for 15 min to remove some impurities and dried in an oven at 60 ℃, and then 10 mg of the nanofiber is wrapped in a thermoplastic polyester fabric pocket. The vacuum pump oil and di-iso-decyl phthalate (DIDP) are chosen as absorbates to test the absorbent performance of the nanofiber in the vacuum environment. Experiments are performed under the pressure of 10-4 and 103 Pa, respectively. It is shown that the nanofiber-based enrichment device can be used to adsorb the organic contaminants in the vacuum simulation environment.