近年来磁力显微镜(magnetic force microscopy,MFM)对动态磁场信号的测量与分析由于其特殊的工业要求和重要用途而受到广泛关注,本文旨在利用交变磁力对磁性探针的周期性调制发展一种交变力磁力显微镜技术,为磁信息存储工业等重要领域...近年来磁力显微镜(magnetic force microscopy,MFM)对动态磁场信号的测量与分析由于其特殊的工业要求和重要用途而受到广泛关注,本文旨在利用交变磁力对磁性探针的周期性调制发展一种交变力磁力显微镜技术,为磁信息存储工业等重要领域关键技术的发展提供新型的有力的工具.与目前标准MFM采用的设计思路不同,本文的关键在于合理利用MFM频率调制机理,优化设计MFM磁性探针,并且引入动态信号处理模块,实现对交变磁场信号的MFM成像.为达到这些目的,需要从理论上研究MFM探针的频率调制机理,并由实验上设计出动态信号提取模块,二者相辅结合优化设计出具有动态信号测试和分析能力的交变力磁力显微镜技术,由此来测量和解释纳米尺度磁畴结构.展开更多
Magnetic nanoscale systems,including nanodots,nanofibers,nanowires and nanoparticles,are currently attracting great interest due to their interesting physical and promising applications in various fields,such as magne...Magnetic nanoscale systems,including nanodots,nanofibers,nanowires and nanoparticles,are currently attracting great interest due to their interesting physical and promising applications in various fields,such as magnetic recording,sensors,target drugs and catalysts,as well as others.To achieve ultrahigh recording density,the method of heat assisted magnetic recording(HAMR) has been introduced.In this work,with the help of a Monte Carlo method,the mechanisms of thermally assisted magnetization switching in FePt single-domain particles driven by an external magnetic field are investigated,where the temperature in the particles is assumed to follow a Gaussian distribution.Two nucleation modes are observed for different distributions of temperature.One is initiated by many droplets,which join each other at the boundary of the system;the other is ini-tiated by many droplets at the boundary,but in growth tending toward the inner part of the system.An inverse proportional relationship between the metastable lifetime and the distribution is also found.展开更多
The current-driven domain wall motion was investigated on permalloy nanowires with different dimensions by micromagnetic simulations.The critical current density increased with the reduction in both the width and thic...The current-driven domain wall motion was investigated on permalloy nanowires with different dimensions by micromagnetic simulations.The critical current density increased with the reduction in both the width and thickness of nanowires because of the enhanced hard-axis anisotropy.At a thickness of 5 nm,the critical current density decreased with the reduction of the nanowire width because of the reduced domain wall width.展开更多
文摘近年来磁力显微镜(magnetic force microscopy,MFM)对动态磁场信号的测量与分析由于其特殊的工业要求和重要用途而受到广泛关注,本文旨在利用交变磁力对磁性探针的周期性调制发展一种交变力磁力显微镜技术,为磁信息存储工业等重要领域关键技术的发展提供新型的有力的工具.与目前标准MFM采用的设计思路不同,本文的关键在于合理利用MFM频率调制机理,优化设计MFM磁性探针,并且引入动态信号处理模块,实现对交变磁场信号的MFM成像.为达到这些目的,需要从理论上研究MFM探针的频率调制机理,并由实验上设计出动态信号提取模块,二者相辅结合优化设计出具有动态信号测试和分析能力的交变力磁力显微镜技术,由此来测量和解释纳米尺度磁畴结构.
基金support by the Fund for Talents Introduction of Chongqing University of Arts and Sciences (Grant No. Z2011RCYJ03)
文摘Magnetic nanoscale systems,including nanodots,nanofibers,nanowires and nanoparticles,are currently attracting great interest due to their interesting physical and promising applications in various fields,such as magnetic recording,sensors,target drugs and catalysts,as well as others.To achieve ultrahigh recording density,the method of heat assisted magnetic recording(HAMR) has been introduced.In this work,with the help of a Monte Carlo method,the mechanisms of thermally assisted magnetization switching in FePt single-domain particles driven by an external magnetic field are investigated,where the temperature in the particles is assumed to follow a Gaussian distribution.Two nucleation modes are observed for different distributions of temperature.One is initiated by many droplets,which join each other at the boundary of the system;the other is ini-tiated by many droplets at the boundary,but in growth tending toward the inner part of the system.An inverse proportional relationship between the metastable lifetime and the distribution is also found.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50831002,50971025,51071022 and 11174031)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. 2011031)+1 种基金Beijing Municipal Natural Science Foundation (Grant No. 2102032)the Fundamental Research Funds for Central Universities
文摘The current-driven domain wall motion was investigated on permalloy nanowires with different dimensions by micromagnetic simulations.The critical current density increased with the reduction in both the width and thickness of nanowires because of the enhanced hard-axis anisotropy.At a thickness of 5 nm,the critical current density decreased with the reduction of the nanowire width because of the reduced domain wall width.