Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against e...Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature.展开更多
In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic l...In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multi functional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characteri- zation techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications.展开更多
A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nano...A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.展开更多
文摘Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature.
文摘In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multi functional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characteri- zation techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications.
基金supported by the National Natural Science Foundation of China(Grant No.21374088)the grant from the Program for New Century Excellent Talents of Ministry of Education(Grant No.NCET-13-0476)+1 种基金the Program of Youth Science and Technology Nova of Shaanxi Province of China(Grant No.2013KJXX-21)the Program of New Staff and Research Area Project of NPU(Grant No.13GH014602)
文摘A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.