期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
注水井疏水降压增注液体系的研究与应用 被引量:4
1
作者 樊庆缘 蒋文学 武龙 《石油与天然气化工》 CAS 北大核心 2017年第5期78-82,共5页
为解决长庆油田Y19区块注水井普遍存在的长期高压欠注和措施有效期短的问题,通过开展岩石矿物成分、储层敏感性、地层流体与注入水的配伍性等分析实验,找出了引起注水井高压欠注的主要因素,分别是储层敏感性、注入水引起的润湿反转及化... 为解决长庆油田Y19区块注水井普遍存在的长期高压欠注和措施有效期短的问题,通过开展岩石矿物成分、储层敏感性、地层流体与注入水的配伍性等分析实验,找出了引起注水井高压欠注的主要因素,分别是储层敏感性、注入水引起的润湿反转及化学结垢堵塞。对此,室内研发出一套由低伤害酸液、硫酸盐垢解除剂、纳米疏水材料段塞组成的疏水降压增注液体系。该体系能够有效解除化学结垢堵塞,改善岩石表面润湿性,降低水驱毛管阻力,从根本上解决了引起注水井高压欠注的主要矛盾。已完成的2口现场试验井均达到配注要求,且注入压力下降均超过2 MPa,累计增注8 077m^3,较常规措施有效期延长4个月以上,取得了较好的应用效果,同时也为低渗透油田降压增注作业提供了一种有效的技术手段。 展开更多
关键词 疏水降压增注 低伤害酸液 硫酸盐垢解除剂 纳米疏水材料 高压欠注井
下载PDF
纳米颗粒在储层微流道中的减阻机理实验研究 被引量:7
2
作者 顾春元 狄勤丰 +2 位作者 施利毅 王新亮 张任良 《实验流体力学》 EI CAS CSCD 北大核心 2010年第6期6-10,15,共6页
用SNP1-1、SNP2-2和SNP2-4三种疏水纳米材料分别与柴油配制成3种油基纳米液,用SNP2-2分别与ND3和ND4配制成2种水基纳米液,通过岩心流动实验测试了这5种纳米液的减阻效果。实验结果显示,3种油基纳米液使岩心水相渗透率提高了42%、49%和24... 用SNP1-1、SNP2-2和SNP2-4三种疏水纳米材料分别与柴油配制成3种油基纳米液,用SNP2-2分别与ND3和ND4配制成2种水基纳米液,通过岩心流动实验测试了这5种纳米液的减阻效果。实验结果显示,3种油基纳米液使岩心水相渗透率提高了42%、49%和24%,2种水基纳米液分别使岩心水相渗透率提高了17.5%和75%,5种纳米液都具有减阻效果,但不同纳米液的效果差异明显,这说明增注液不具有唯一性,但纳米粒径、修饰剂和分散剂对减阻效果有明显的影响。测试了SNP2-2油基纳米液处理岩心的耐冲刷能力,岩心经180倍孔隙体积(PV)水的驱替,仍具有一定的效果,说明纳米边界层流道壁面有较强的吸附能力。现场采用SNP2-2和ND4配制的纳米液进行了三口井的增注试验,注水压力最大降幅12.5MPa。研究结果与实验前的设想相符,较好地说明了纳米减阻机理。 展开更多
关键词 疏水纳米材料 减阻机理 吸附 耐冲刷能力 岩心流动实验
下载PDF
Design of multi-functional dual hole patterned carbon nanotube composites with superhydrophobicity and durability 被引量:4
3
作者 Sung-Hoon Park Eun-Hyoung Cho +6 位作者 Jinseung Sohn Paul Theilmann Kunmo Chu Sunghee Lee Yoonchul Sohn Dongouk Kim Byunghoon Kim 《Nano Research》 SCIE EI CAS CSCD 2013年第6期389-398,共10页
Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against e... Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature. 展开更多
关键词 dual hole nanoimprint lithography SUPERHYDROPHOBIC arbon nanotube durability multifunction
原文传递
Multifunctional organically modified graphene with super-hydrophobicity 被引量:5
4
作者 Huawen Hu Chan C. K. Allan Jianhua Li Yeeyee Kong Xiaowen Wang John H. Xin Hong Hu 《Nano Research》 SCIE EI CAS CSCD 2014年第3期418-433,共16页
In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic l... In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multi functional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characteri- zation techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications. 展开更多
关键词 low-temperature thermallyfunctionalized graphene organic modification organically modifiedgraphene liquid marbles polymer nanocomposites
原文传递
A general, rapid and solvent-free approach to fabricating nanostructured polymer surfaces 被引量:1
5
作者 TIAN Wei HUANG Long Biao +1 位作者 WANG Da Wei Roy V. A. L. 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第12期2328-2334,共7页
A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nano... A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vi- bration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ~30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydro- phobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maxi- mum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies. 展开更多
关键词 NANOMATERIALS nanostructured polymer surfaces ultrasonic vibration anodized aluminum oxide template WETTABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部