A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes. After the treatment at the temperature of 500℃ in H2 an...A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes. After the treatment at the temperature of 500℃ in H2 and O2H2 gas for 20 minutes,the CNTs/CNFs cathodes exhibit much better field emission properties than those untreated. The emission current increases from 0.02 mA/cm^2 to 0.5 mA/cm^2 at 3.9 V/μm with a decrease in the turn-on field from 2.4 V to 1.8 V ,and the emission site density is increased by almost four orders in magnitude. The enhanced field emission of treated CNTs/CNFs cathodes is attributed to the appearance of a large number of exposed CNTs/CNFs caused by heat treatment. This surface morphology is very favorable for the electron field emission.展开更多
Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and mo...Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and more than half of the DWCNTs have inner diameters in the range 0.6-1.0 nm. Field electron emission from a DWCNT cathode to an anode has been measured, and the emission current density of DWCNTs reached 1 A/cm2 at an applied field of about 4.3 V/~tm. After high-temperature treatment of DWCNTs, long linear carbon chains (C-chains) can be grown inside the ultra-thin DWCNTs to form a novel C-chain@DWCNT nanostructure, showing that these ultra-thin DWCNTs are an appropriate nanocontainer for preparing truly one-dimensional nanostructures with one-atom-diameter.展开更多
Highly adhesive cold cathodes with high field emission performance are fabricated by using a screen-print- ing method. The emission density of carbon nanotube (CNT) cold cathode reaches 207.0 mA cm-2 at an electric ...Highly adhesive cold cathodes with high field emission performance are fabricated by using a screen-print- ing method. The emission density of carbon nanotube (CNT) cold cathode reaches 207.0 mA cm-2 at an electric field of 4.5 Vμm-1 under continuous driving mode, and high peak current emission of 315.8 mA corresponding to 4.5 A cm 2 at the electric field of 10.3 V μm-1 under pulsed driving mode. The emission patterns of the cold cathodes are of excellent uniformity that was revealed by vivid luminescent patterns of phosphor coated transparent indium tin oxide (ITO) an- ode. The cold cathodes also exhibit highly stable emission under continuous and pulsed driving modes. The high adhe- sion of CNTs to molybdenum substrates results in robust cold cathodes and is responsible for the high field emission performance. This robust CNT emitter could meet the operating requirements of continuous and pulsed electron sources, and it provides promising applications in various vacuum- micro/nanoelectronic devices.展开更多
Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(C...Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).展开更多
Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized...Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.展开更多
Powder metallurgy was used to fabricate carbon nanotube(CNT) field emission cathodes.CNTs and tin(Sn) powder were blended,compacted and sintered.After polishing and etching,CNTs were exposed and protruded from the met...Powder metallurgy was used to fabricate carbon nanotube(CNT) field emission cathodes.CNTs and tin(Sn) powder were blended,compacted and sintered.After polishing and etching,CNTs were exposed and protruded from the metal surface.CNTs were embedded into the Sn matrix,which acted as stable field emitters. The J-E curves show excellent field emission properties,such as low turn-on field of 2.8 V/μm,high emission current density and good current stability.展开更多
文摘A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes. After the treatment at the temperature of 500℃ in H2 and O2H2 gas for 20 minutes,the CNTs/CNFs cathodes exhibit much better field emission properties than those untreated. The emission current increases from 0.02 mA/cm^2 to 0.5 mA/cm^2 at 3.9 V/μm with a decrease in the turn-on field from 2.4 V to 1.8 V ,and the emission site density is increased by almost four orders in magnitude. The enhanced field emission of treated CNTs/CNFs cathodes is attributed to the appearance of a large number of exposed CNTs/CNFs caused by heat treatment. This surface morphology is very favorable for the electron field emission.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10974131), the Nanotechnology Program of Shanghai Science and Technology Committee (No. 0952nm07100), the Scienceand Technology Innovation Fund of the Shanghai Education Committee (No. 09ZZ85) and Shanghai Pujiang Talent Plan (No. 08PJ1405100). We thank Professor Shoushan Fan of Tsinghua-Foxconn Nanotechnology Research Center for the HRTEM measurements, and Professor Pingheng Tan of the Institute of Semiconductors for some of the Raman measurements.
文摘Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and more than half of the DWCNTs have inner diameters in the range 0.6-1.0 nm. Field electron emission from a DWCNT cathode to an anode has been measured, and the emission current density of DWCNTs reached 1 A/cm2 at an applied field of about 4.3 V/~tm. After high-temperature treatment of DWCNTs, long linear carbon chains (C-chains) can be grown inside the ultra-thin DWCNTs to form a novel C-chain@DWCNT nanostructure, showing that these ultra-thin DWCNTs are an appropriate nanocontainer for preparing truly one-dimensional nanostructures with one-atom-diameter.
基金supported by the National Natural Science Foundation of China(51002161)One-Three-Five Strategic Planning of Chinese Academy of Sciences
文摘Highly adhesive cold cathodes with high field emission performance are fabricated by using a screen-print- ing method. The emission density of carbon nanotube (CNT) cold cathode reaches 207.0 mA cm-2 at an electric field of 4.5 Vμm-1 under continuous driving mode, and high peak current emission of 315.8 mA corresponding to 4.5 A cm 2 at the electric field of 10.3 V μm-1 under pulsed driving mode. The emission patterns of the cold cathodes are of excellent uniformity that was revealed by vivid luminescent patterns of phosphor coated transparent indium tin oxide (ITO) an- ode. The cold cathodes also exhibit highly stable emission under continuous and pulsed driving modes. The high adhe- sion of CNTs to molybdenum substrates results in robust cold cathodes and is responsible for the high field emission performance. This robust CNT emitter could meet the operating requirements of continuous and pulsed electron sources, and it provides promising applications in various vacuum- micro/nanoelectronic devices.
基金supported by the National Natural Science Foundation of China(U1510120)Natural Science Foundation of Shanghai(14ZR1400700)+2 种基金the Project of Introducing Overseas Intelligence High Education of China(2017-2018)the Graduate Thesis Innovation Foundation of Donghua University(EG2017031,EG2016034)the College of Environmental Science and Engineering,State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry,Donghua University
文摘Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).
基金supported by the National Natural Science Foundation of China(Grant Nos.91123018,61172041,61172040,50975226,and 60801022)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA03A314)the Fundamental Research Funds for the Central Universities
文摘Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.
基金the National Natural Science Foundation of China(No.50730008)the National Basic Research Program(973)of China(No.2006CB300406)
文摘Powder metallurgy was used to fabricate carbon nanotube(CNT) field emission cathodes.CNTs and tin(Sn) powder were blended,compacted and sintered.After polishing and etching,CNTs were exposed and protruded from the metal surface.CNTs were embedded into the Sn matrix,which acted as stable field emitters. The J-E curves show excellent field emission properties,such as low turn-on field of 2.8 V/μm,high emission current density and good current stability.