Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the...Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.展开更多
In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials...In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials.This theory is inspired by the physical idea that once completely relaxed,an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field.Under external loadings,the surface Helmholtz free energy density is identified as the characteristic function of such surfaces,with the in-plane strain tensor of surface and the surface free charge density as the independent state variables.New boundary conditions governing the surface piezoelectricity are derived through the variational method.The resulting concepts of charge-dependent surface stress and deformationdependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces.As an illustrative example,an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated.The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.展开更多
基金supported by the Ministry of Science and Technology (2016YFA0204100)the National Natural Science Foundation of China (21573254 and 91545110)+1 种基金the Youth Innovation Promotion Association (CAS)the Sinopec China and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030103)
文摘Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.
基金supports from the National Natural Science Foundation of China(Grant Nos. 10772093,10972121,and 10732050)the National Basic Research Program of China(Grant Nos. 2007CB936803 and 2010CB-631005)
文摘In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials.This theory is inspired by the physical idea that once completely relaxed,an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field.Under external loadings,the surface Helmholtz free energy density is identified as the characteristic function of such surfaces,with the in-plane strain tensor of surface and the surface free charge density as the independent state variables.New boundary conditions governing the surface piezoelectricity are derived through the variational method.The resulting concepts of charge-dependent surface stress and deformationdependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces.As an illustrative example,an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated.The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.