The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magn...The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magnetization is less than the theoretical value for the ferrofluids. In the high field range from 5 kOe to 10 kOe, the higher the particle volume fraction is, the steeper the slope of the magnetization curves is when it approaches saturation. The behavior of the saturation magnetization and the law of approach to saturation are due to the presence of self-assembled aggregates of ring-like micelle structures which form in the absence of the magnetic field and field-induced aggregates, respectively. The field-induced aggregates have a dissipative structure, so that at high field, the law of approach to saturation magnetization is different from the one described using Langevin paramagnetism theory. The large particles in the ferrofluids result in apparent hysteresis.展开更多
A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects o...A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.展开更多
Functionalized ionic liquids containing ethyoxyl groups were synthesized and immobilized on magnetic silica nanoparticles (MSNP) prepared by two steps, i.e., Fe304 synthesis and silica shell growth on the surface. T...Functionalized ionic liquids containing ethyoxyl groups were synthesized and immobilized on magnetic silica nanoparticles (MSNP) prepared by two steps, i.e., Fe304 synthesis and silica shell growth on the surface. This magnetic nanoparticle supported ionic liquid (MNP-IL) were applied in the immobilization of penicillin G acylase (PGA). The MSNPs and MNP-ILs were characterized by themeans of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The results showed that the average size of magnetic Fe304 nanoparticles and MSNPs were -10 and -90 nm, respectively. The saturation magnetizations of magnetic Fe304 nanoparticles and MNP-ILs were 63.7 and 26.9 A'm2·kg^-1, respectively. The MNP-IL was successfully applied in the immobilization of PGA. The maximum amount of loaded enzyme-was about 209 mg·g^-1 (based on carder), and the highest enzyme activity of immobilized PGA (based on ImPGA) was 261 U·g^-1. Both the amount of loaded enzyme and the activity of ImPGA are at the same leyel of or higher than that in previous reports. After 10 consecutive operat!ons, ImPGA still mainrained 62% of its initial activity, indicating the'good recovery property of ImPGA activity. The ionic liquid modified magnetic particles integrate the magnetic properties of Fe304 and the structure-tunable properties of ionic liquids, and have extensive potential uses in protein immobilization and magnetic bioseparation. This work may open up a novel strategy to immobilize proteins by ionic liquids.展开更多
Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force ...Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (〉10^8 T·m^- 1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(Ⅲ)/ Fe(Ⅱ)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic properties of magnetite nanoparticles field, owing to the superparamagnetic Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.展开更多
The spindle-like, tubular, and tire-like hematite were successively fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercia...The spindle-like, tubular, and tire-like hematite were successively fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercial industrialization. A mechanism involving a formation-dissolution process was proposed based on the X-ray diffraction, scanning electron microscopy, trans-mission electron microscopy, and high-resolution transmission electron microscopy analysis. It was demonstrated that the presence of phosphate ions during the reaction process is crucial to the morphology evolution of hematite. Their different ad-sorption ability on the different crystallographic planes of hematite and a coordination effect with ferric ions could promote the preferential dissolution of the spindle-like hematite precursors along the long axis [001] from the tips down to the interior, and thus yield the tubular and tire-like hematite one by one with the increasing reaction time. The magnetic measurements have also been performed to investigate the different magnetic properties such as coercivity and low-temperature transition behavior of three different hematite nanostructures.展开更多
文摘The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magnetization is less than the theoretical value for the ferrofluids. In the high field range from 5 kOe to 10 kOe, the higher the particle volume fraction is, the steeper the slope of the magnetization curves is when it approaches saturation. The behavior of the saturation magnetization and the law of approach to saturation are due to the presence of self-assembled aggregates of ring-like micelle structures which form in the absence of the magnetic field and field-induced aggregates, respectively. The field-induced aggregates have a dissipative structure, so that at high field, the law of approach to saturation magnetization is different from the one described using Langevin paramagnetism theory. The large particles in the ferrofluids result in apparent hysteresis.
基金Supported by the National Natural Science Foundation of China(No.41201487)the Natural Science Foundation of Hebei Province(No.2014202074)
文摘A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.
基金Supported by the National Basic Research Program of China (2007CB613507)
文摘Functionalized ionic liquids containing ethyoxyl groups were synthesized and immobilized on magnetic silica nanoparticles (MSNP) prepared by two steps, i.e., Fe304 synthesis and silica shell growth on the surface. This magnetic nanoparticle supported ionic liquid (MNP-IL) were applied in the immobilization of penicillin G acylase (PGA). The MSNPs and MNP-ILs were characterized by themeans of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The results showed that the average size of magnetic Fe304 nanoparticles and MSNPs were -10 and -90 nm, respectively. The saturation magnetizations of magnetic Fe304 nanoparticles and MNP-ILs were 63.7 and 26.9 A'm2·kg^-1, respectively. The MNP-IL was successfully applied in the immobilization of PGA. The maximum amount of loaded enzyme-was about 209 mg·g^-1 (based on carder), and the highest enzyme activity of immobilized PGA (based on ImPGA) was 261 U·g^-1. Both the amount of loaded enzyme and the activity of ImPGA are at the same leyel of or higher than that in previous reports. After 10 consecutive operat!ons, ImPGA still mainrained 62% of its initial activity, indicating the'good recovery property of ImPGA activity. The ionic liquid modified magnetic particles integrate the magnetic properties of Fe304 and the structure-tunable properties of ionic liquids, and have extensive potential uses in protein immobilization and magnetic bioseparation. This work may open up a novel strategy to immobilize proteins by ionic liquids.
文摘Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (〉10^8 T·m^- 1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(Ⅲ)/ Fe(Ⅱ)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic properties of magnetite nanoparticles field, owing to the superparamagnetic Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.
基金supported by the National Natural Science Foundation of China (51072086)
文摘The spindle-like, tubular, and tire-like hematite were successively fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercial industrialization. A mechanism involving a formation-dissolution process was proposed based on the X-ray diffraction, scanning electron microscopy, trans-mission electron microscopy, and high-resolution transmission electron microscopy analysis. It was demonstrated that the presence of phosphate ions during the reaction process is crucial to the morphology evolution of hematite. Their different ad-sorption ability on the different crystallographic planes of hematite and a coordination effect with ferric ions could promote the preferential dissolution of the spindle-like hematite precursors along the long axis [001] from the tips down to the interior, and thus yield the tubular and tire-like hematite one by one with the increasing reaction time. The magnetic measurements have also been performed to investigate the different magnetic properties such as coercivity and low-temperature transition behavior of three different hematite nanostructures.