Temperature dependence of the hyperfine field of Fe nanocrystalline in SiO2matrix prepared by using an ion implantation and subsequent heat treatment can not be described by a formula for the isolated Fe nanocrystalli...Temperature dependence of the hyperfine field of Fe nanocrystalline in SiO2matrix prepared by using an ion implantation and subsequent heat treatment can not be described by a formula for the isolated Fe nanocrystalline.The large stresses or chemical bond force to which interface atoms may be subjected lead to increase effective anisotropic constant. In addition a little concentration of oxygen atoms contained in the crystalline might enhance the hyperfine field.展开更多
Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen ...Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen into samples was carried out. The chemical composition of the modified surface area was investigated by AES (auger electron spectroscopy). The nanohardness of resulted ion beam modified surface nanolayers were investigated by nanoindentation testing. The measured concentration profiles indicate the atomic mixing of carbon into the substrate. It was found that the modified samples had a markedly higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases in the surface area.展开更多
The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni cata...The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etching is different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth, the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 rain) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD.展开更多
The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering inv...The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering investigation, we determine that the deposited film has the structure of silicon nanocrystals embedded in silicon nitride (nc-Si/SiNx) thin film at a certain hydrogen dilution amount. The analysis of optical absorption spectra implies that the Si NPs is affected by quantum size effects and has the nature of an indirect-band-gap semiconductor. Further, considering the effects of the mean Si NP size and their dispersion on oscillator strength, and quantum-confinement, we obtain an analytical expression for the spectral absorbance of ensemble samples. Gaussian as well as lognormal size-distributions of the Si NPs are considered for optical absorption coefficient calculations. The influence of the particle size-distribution on the optical absorption spectra was systematically studied. We present the fitting of the optical absorption experimental data with our model and discuss the results.展开更多
Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field...Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.展开更多
Semiconducting silicon(Si)nanomaterials have great potential for the applications in electronics,physics,and energy storage fields.However,to date,it is still a challenge to realize the batch production of Si nanomate...Semiconducting silicon(Si)nanomaterials have great potential for the applications in electronics,physics,and energy storage fields.However,to date,it is still a challenge to realize the batch production of Si nanomaterials via efficient and low-cost approaches,owing to some long-standing shortcomings,e.g.,complex procedures and time and/or energy consumption.Herein,we report a green and inexpensive method to rapidly obtain two-dimensional(2D)free-standing Si/SiO_(x) nanosheets via the rapid thermal exfoliation of layered Zintl compound CaSi_(2).With the help of the rapid exfoliation reaction of CaSi_(2) in the atmosphere of greenhouse gas CO_(2),and the following mild sonication,2D free-standing Si/SiO_(x) nanosheets can be produced with very high yield.After applying the coating of a thin carbon outer layer,the electrodes of Si/SiO_(x)/C nanosheets serving as the anodes for lithium-ion batteries exhibit ultrahigh reversible capacity and outstanding electrochemical stability.We expect this study will provide new insights and inspirations for the convenient and batch production of nanostructural Si-based anode materials towards high-performance lithium-ion batteries.展开更多
Rotary near-field lithography(RNFL) technology provides a route to overcome the diffraction limit with a high throughput and low cost for nanomanufacturing. Utilizing the advantage of the passive flying of a plasmonic...Rotary near-field lithography(RNFL) technology provides a route to overcome the diffraction limit with a high throughput and low cost for nanomanufacturing. Utilizing the advantage of the passive flying of a plasmonic head, RNFL can achieve a 10 m/s processing speed with a perfect near-field condition at dozens of nanometers. The flying performance of the plasmonic flying head(PFH) is the pivotal issue in the system. The linewidth has a strong correlation with the near-field gap, and the manufacturing uniformity is directly influenced by the dynamic performance. A more serious issue is that the unexpected contact between the PFH and substrate will result in system failure. Therefore, it is important to model and analyze the flying process of the PFH at the system level. In this study, a novel full-coupled suspension-PFH-air-substrate(SPAS) model that integrates a six-degree of freedom suspension-PFH dynamics, PFH-air-substrate air bearing lubrication, and substrate vibration, is established. The pressure distribution of the air bearing is governed by the molecular gas lubrication equation that is solved by the finite element method(FEM) with a local pressure gradient based adaptive mesh refinement algorithm using the COMSOL Multiphysics software. Based on this model, three designs of the air bearing surface are chosen to study the static, dynamic, and load/unload performance to verify whether it satisfies the design requirements of RNFL. Finally, a PFH analysis solver SKLY.app is developed based on the proposed model.展开更多
By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in...By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in the pre-strained nanowires can be released significantly by the dislocation emission from the cascade core when the strain is greater than 1%.In addition,comparison of the stress-strain relationships between the defect-free nanowire and the irradiated ones indicates that ion irradiation reduces the yield strength of the Cu nanowires,and both the yield stress and strain decrease with the increase of irradiation energy.The results are consistent with the microscopic mechanism of damage production by ion irradiation and provide quantitative information required for accessing the stability of nanomaterials subjected to mechanical loading and irradiation coupling effects.展开更多
WS2/carbon nanofibers (WS2/CNFs) are obtained by a simple electrospinning method in which few-/ single-layer WS2 is uniformly embedded in carbon fibers. When used as the active anode material for Li-ion cells, these...WS2/carbon nanofibers (WS2/CNFs) are obtained by a simple electrospinning method in which few-/ single-layer WS2 is uniformly embedded in carbon fibers. When used as the active anode material for Li-ion cells, these nanofibers exhibit a first-cycle discharge/charge capacity of 941/756 mAh/g at 100 mAJg and maintain a capacity of 458 mAh/g after 100 cycles at 1 A/g. The evolution of size and crystallinity of WS2 with heating treatment are system- atically studied, which are found to strongly influence the final electrochemical performance. Interestingly, the WS2 samples of lowest crystallinity show the highest performance among all studied samples, which could result from the large interfacial capacity for Li ions due to their large specific surface area. More interestingly, the inherent flexible attribute of electrospun nanofibers renders them a great potential in the utilization of binder-flee anodes. Similar high discharge/charge capacity of 761/604 mAh/g with a first coulombic efficiency of 79.4 % has been achieved in these binder-flee anodes. Considering the universal of such simple and scalable preparation strategy, it is very likely to extend this method to other similar two-dimensional layered materials besides WS2 and provides a promising candidate elec- trode for developing flexible battery devices.展开更多
Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, pla...Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.展开更多
The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, an...The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, and longer cycle life. Transition metal oxides have recently re- ceived a great deal of attention as very promising anode materials due to their high theoretical capacity, good safety, eco-benignity, and huge abundance. The present work re- views the latest advances in developing novel transition metal oxides, including FeeO3, Fe3O4, CO3O4, CoO, NiO, MnO, Mn203, Mn3O4, MnO2, MOO3, Cr2O3, Nb2O5, and some binary oxides such as NiCO2O4, ZnCO2O4, MnCO2O4 and CoMn2O4. Nanostructuring and hybrid strategies ap- plicable to transition metal oxides are summarized and analyzed. Furthermore, the impacts of binder choice and heat treatment on electrochemical performance are discussed.展开更多
Silicon is the most promising anode material for the next generation high- performance lithium ion batteries. However, its commercial application is hindered by its poor performance due to the huge volume change durin...Silicon is the most promising anode material for the next generation high- performance lithium ion batteries. However, its commercial application is hindered by its poor performance due to the huge volume change during cycling. Although two-dimensional silicon-based materials show significantly improved performance, flexible synthesis of such materials is still a challenge. In this work, silicon-based nanosheets with a multilayer structure are synthesized for the first time by a topochemical reaction. The morphology and oxidation state of these nanosheets can be controlled by appropriate choice of reaction media and oxidants. Benefiting from the hierarchical structure and ultrathin size, when the silicon-based nanosheets are employed as anodes they exhibit a charge (delithiation) capacity of 800 mAh/g after 50 cycles with a maximum coulombic efficiency of 99.4% and good rate performance (647 mAh/g at 1 A/g). This work demonstrates a novel method for preparing nanosheets not only for lithium ion batteries but also having various potential applications in other fields, such as catalysts, electronics and photonics.展开更多
Gold nanoparticles(AuNPs) interact with light and have strong and tunable surface plasmon resonance,which can be detected using multiple imaging modalities.These provide an unique opportunity for their potential appli...Gold nanoparticles(AuNPs) interact with light and have strong and tunable surface plasmon resonance,which can be detected using multiple imaging modalities.These provide an unique opportunity for their potential applications in optical imaging for early detection of cancer.In this review,we summarized nanoparticles targeting properties for cancer,plasmon optical properties of AuNPs,application of AuNPs for cancer optical imaging.Also discussed is the safety of AuNPs.展开更多
Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ a...Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.展开更多
An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanopartic...An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanoparticles attached surface could be obtained by self-assembly of different sized colloidal gold nanoparticles onto the NH2+ ion implantation-modified indium tin oxide surface.By scanning electron microscopy and electrochemical techniques,the as-prepared AuNPs attached NH2+ ion implantation-modified indium tin oxide electrode was characterized and compared with bare indium tin oxide electrode.Using a [Fe(CN)6]3 /[Fe(CN)6]4 redox probe,the increasingly facile heterogeneous electron transfer kinetics resulting from the attached gold nanoparticle arrays was observed.The gold nanoparticle arrays exhibited high catalytic activity toward the electro-oxidation of nitric oxide,which could provide electroanalytical application for nitric oxide sensing.展开更多
To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challe...To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challenging to achieve high performance anode composites with high specific capa- city, excellent rate performance, high initial Coulombic effi- ciency (ICE) and long cycle life. Based on these requirements, we design and fabricate activated carbon-coated carbon na- notubes (AC@CNT) with hierarchical structures containing micro- and meso-pores. A new structure of phosphorus/car- bon composite (P@AC@CNT) is prepared by confining red P in porous carbon through a vaporization-condensation-con- version method. The micro-pores are filled with P, while the meso-pores remain unoccupied, and the pore openings on the particle surface are sealed by P. Due to the unique structure of P@AC@CNT, it displays a high specific capacity of 1674 mA h g-i at 0.2 C, ultrahigh ICE of 92.2%, excellent rate per- formance of 1116 mA h g-i at 6 C, and significantly enhanced cycle stability for LIBs. The application of P@AC@CNT in NIBs is further explored. This method for the fabrication of the special composites with improved electrochemical per- formance can be extended to other energy storage applica- tions.展开更多
Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions ...Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.展开更多
Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alk...Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alkali element K is incorporated into CFTS thin films in order to fiLrther improve the surface morphology and the optical properties of related films. X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to characterize the phase purity, morphology and composition of CFTS particles and thin films. The results show that the particle elemental ratios of Cu/(Fe+Sn) and Fe/Sn are 1.2 and 0.9, respectively, which are close to the characteristics of stoichiometric CFTS. The band gaps of CFTS films before and after doping K ions are estimated to be 1.44 eV and 1.4 eV with an error of ±0.02 eV.展开更多
文摘Temperature dependence of the hyperfine field of Fe nanocrystalline in SiO2matrix prepared by using an ion implantation and subsequent heat treatment can not be described by a formula for the isolated Fe nanocrystalline.The large stresses or chemical bond force to which interface atoms may be subjected lead to increase effective anisotropic constant. In addition a little concentration of oxygen atoms contained in the crystalline might enhance the hyperfine field.
文摘Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen into samples was carried out. The chemical composition of the modified surface area was investigated by AES (auger electron spectroscopy). The nanohardness of resulted ion beam modified surface nanolayers were investigated by nanoindentation testing. The measured concentration profiles indicate the atomic mixing of carbon into the substrate. It was found that the modified samples had a markedly higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases in the surface area.
基金Project supported by Intelligent Microsystem Center(IMC)Project(2010-0008-276) supported by the National Core Research Center through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyProject(2010) supported by Pusan National University
文摘The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etching is different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth, the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 rain) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD.
基金Supported by the National Natural Science Foundation of China under Grant No.60940020the Natural Foundation of Hebei Province under Grant No.E2008000619
文摘The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering investigation, we determine that the deposited film has the structure of silicon nanocrystals embedded in silicon nitride (nc-Si/SiNx) thin film at a certain hydrogen dilution amount. The analysis of optical absorption spectra implies that the Si NPs is affected by quantum size effects and has the nature of an indirect-band-gap semiconductor. Further, considering the effects of the mean Si NP size and their dispersion on oscillator strength, and quantum-confinement, we obtain an analytical expression for the spectral absorbance of ensemble samples. Gaussian as well as lognormal size-distributions of the Si NPs are considered for optical absorption coefficient calculations. The influence of the particle size-distribution on the optical absorption spectra was systematically studied. We present the fitting of the optical absorption experimental data with our model and discuss the results.
文摘Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.
基金financially supported by the National Key Research and Development Program of China(2017YFA0208200 and 2016YFB0700600)the Fundamental Research Funds for the Central Universities of China(0205-14380219)+3 种基金the Projects of National Natural Science Foundation of China(22022505,21872069 and 51761135104)the Natural Science Foundation of Jiangsu Province(BK20181056,BK20180008 and BK20191042)Jiangsu Postdoctoral Science Fundation(2020Z258)the Funding for School-level Research Projects of Yancheng Institute of Technology(xjr2019006).
文摘Semiconducting silicon(Si)nanomaterials have great potential for the applications in electronics,physics,and energy storage fields.However,to date,it is still a challenge to realize the batch production of Si nanomaterials via efficient and low-cost approaches,owing to some long-standing shortcomings,e.g.,complex procedures and time and/or energy consumption.Herein,we report a green and inexpensive method to rapidly obtain two-dimensional(2D)free-standing Si/SiO_(x) nanosheets via the rapid thermal exfoliation of layered Zintl compound CaSi_(2).With the help of the rapid exfoliation reaction of CaSi_(2) in the atmosphere of greenhouse gas CO_(2),and the following mild sonication,2D free-standing Si/SiO_(x) nanosheets can be produced with very high yield.After applying the coating of a thin carbon outer layer,the electrodes of Si/SiO_(x)/C nanosheets serving as the anodes for lithium-ion batteries exhibit ultrahigh reversible capacity and outstanding electrochemical stability.We expect this study will provide new insights and inspirations for the convenient and batch production of nanostructural Si-based anode materials towards high-performance lithium-ion batteries.
基金financially supported by the National Natural Science Foundation of China (NSFC) with Grant No. 51635009
文摘Rotary near-field lithography(RNFL) technology provides a route to overcome the diffraction limit with a high throughput and low cost for nanomanufacturing. Utilizing the advantage of the passive flying of a plasmonic head, RNFL can achieve a 10 m/s processing speed with a perfect near-field condition at dozens of nanometers. The flying performance of the plasmonic flying head(PFH) is the pivotal issue in the system. The linewidth has a strong correlation with the near-field gap, and the manufacturing uniformity is directly influenced by the dynamic performance. A more serious issue is that the unexpected contact between the PFH and substrate will result in system failure. Therefore, it is important to model and analyze the flying process of the PFH at the system level. In this study, a novel full-coupled suspension-PFH-air-substrate(SPAS) model that integrates a six-degree of freedom suspension-PFH dynamics, PFH-air-substrate air bearing lubrication, and substrate vibration, is established. The pressure distribution of the air bearing is governed by the molecular gas lubrication equation that is solved by the finite element method(FEM) with a local pressure gradient based adaptive mesh refinement algorithm using the COMSOL Multiphysics software. Based on this model, three designs of the air bearing surface are chosen to study the static, dynamic, and load/unload performance to verify whether it satisfies the design requirements of RNFL. Finally, a PFH analysis solver SKLY.app is developed based on the proposed model.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 11002011,10902111 and 10932001)Fundamental Research Funds for the Central Universities
文摘By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in the pre-strained nanowires can be released significantly by the dislocation emission from the cascade core when the strain is greater than 1%.In addition,comparison of the stress-strain relationships between the defect-free nanowire and the irradiated ones indicates that ion irradiation reduces the yield strength of the Cu nanowires,and both the yield stress and strain decrease with the increase of irradiation energy.The results are consistent with the microscopic mechanism of damage production by ion irradiation and provide quantitative information required for accessing the stability of nanomaterials subjected to mechanical loading and irradiation coupling effects.
文摘WS2/carbon nanofibers (WS2/CNFs) are obtained by a simple electrospinning method in which few-/ single-layer WS2 is uniformly embedded in carbon fibers. When used as the active anode material for Li-ion cells, these nanofibers exhibit a first-cycle discharge/charge capacity of 941/756 mAh/g at 100 mAJg and maintain a capacity of 458 mAh/g after 100 cycles at 1 A/g. The evolution of size and crystallinity of WS2 with heating treatment are system- atically studied, which are found to strongly influence the final electrochemical performance. Interestingly, the WS2 samples of lowest crystallinity show the highest performance among all studied samples, which could result from the large interfacial capacity for Li ions due to their large specific surface area. More interestingly, the inherent flexible attribute of electrospun nanofibers renders them a great potential in the utilization of binder-flee anodes. Similar high discharge/charge capacity of 761/604 mAh/g with a first coulombic efficiency of 79.4 % has been achieved in these binder-flee anodes. Considering the universal of such simple and scalable preparation strategy, it is very likely to extend this method to other similar two-dimensional layered materials besides WS2 and provides a promising candidate elec- trode for developing flexible battery devices.
文摘Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.
基金supported by the National Basic Research Program of China(2013CB934103)the National Natural Science Foundation of China(21173054)Science & Technology Commission of Shanghai Municipality(08DZ2270500)
文摘The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, and longer cycle life. Transition metal oxides have recently re- ceived a great deal of attention as very promising anode materials due to their high theoretical capacity, good safety, eco-benignity, and huge abundance. The present work re- views the latest advances in developing novel transition metal oxides, including FeeO3, Fe3O4, CO3O4, CoO, NiO, MnO, Mn203, Mn3O4, MnO2, MOO3, Cr2O3, Nb2O5, and some binary oxides such as NiCO2O4, ZnCO2O4, MnCO2O4 and CoMn2O4. Nanostructuring and hybrid strategies ap- plicable to transition metal oxides are summarized and analyzed. Furthermore, the impacts of binder choice and heat treatment on electrochemical performance are discussed.
文摘Silicon is the most promising anode material for the next generation high- performance lithium ion batteries. However, its commercial application is hindered by its poor performance due to the huge volume change during cycling. Although two-dimensional silicon-based materials show significantly improved performance, flexible synthesis of such materials is still a challenge. In this work, silicon-based nanosheets with a multilayer structure are synthesized for the first time by a topochemical reaction. The morphology and oxidation state of these nanosheets can be controlled by appropriate choice of reaction media and oxidants. Benefiting from the hierarchical structure and ultrathin size, when the silicon-based nanosheets are employed as anodes they exhibit a charge (delithiation) capacity of 800 mAh/g after 50 cycles with a maximum coulombic efficiency of 99.4% and good rate performance (647 mAh/g at 1 A/g). This work demonstrates a novel method for preparing nanosheets not only for lithium ion batteries but also having various potential applications in other fields, such as catalysts, electronics and photonics.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Gold nanoparticles(AuNPs) interact with light and have strong and tunable surface plasmon resonance,which can be detected using multiple imaging modalities.These provide an unique opportunity for their potential applications in optical imaging for early detection of cancer.In this review,we summarized nanoparticles targeting properties for cancer,plasmon optical properties of AuNPs,application of AuNPs for cancer optical imaging.Also discussed is the safety of AuNPs.
基金supported by the National Basic Research Program of Chi-na(Grant Nos.2011CB707601,2011CB707605)the National Natural Science Foundation of China(Grant No.50925519)+3 种基金the Research Funding for the Doctor Program from China Educational Ministry(Grant No.20100092110051)the Innovative Project for Graduate Students of Jiangsu Province(Grant No.CXZZ13_0087)the Scientific Research Founda-tion of Graduate School of Southeast University(Grant No.YBJJ1322)The calculations were performed on Tianhe-1A at National Supercomputing Center in Tianjin,China
文摘Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.
基金supported by the National Nature Science Foundation of China (20211130505)the Fundamental Research Funds for the Central Universities of China
文摘An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanoparticles attached surface could be obtained by self-assembly of different sized colloidal gold nanoparticles onto the NH2+ ion implantation-modified indium tin oxide surface.By scanning electron microscopy and electrochemical techniques,the as-prepared AuNPs attached NH2+ ion implantation-modified indium tin oxide electrode was characterized and compared with bare indium tin oxide electrode.Using a [Fe(CN)6]3 /[Fe(CN)6]4 redox probe,the increasingly facile heterogeneous electron transfer kinetics resulting from the attached gold nanoparticle arrays was observed.The gold nanoparticle arrays exhibited high catalytic activity toward the electro-oxidation of nitric oxide,which could provide electroanalytical application for nitric oxide sensing.
基金financially supported by the National Natural Science Foundation of China (91648109)the National Key Research and Development Program of China (2017YFB0307001)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions333 project of Jiangsu Province
文摘To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challenging to achieve high performance anode composites with high specific capa- city, excellent rate performance, high initial Coulombic effi- ciency (ICE) and long cycle life. Based on these requirements, we design and fabricate activated carbon-coated carbon na- notubes (AC@CNT) with hierarchical structures containing micro- and meso-pores. A new structure of phosphorus/car- bon composite (P@AC@CNT) is prepared by confining red P in porous carbon through a vaporization-condensation-con- version method. The micro-pores are filled with P, while the meso-pores remain unoccupied, and the pore openings on the particle surface are sealed by P. Due to the unique structure of P@AC@CNT, it displays a high specific capacity of 1674 mA h g-i at 0.2 C, ultrahigh ICE of 92.2%, excellent rate per- formance of 1116 mA h g-i at 6 C, and significantly enhanced cycle stability for LIBs. The application of P@AC@CNT in NIBs is further explored. This method for the fabrication of the special composites with improved electrochemical per- formance can be extended to other energy storage applica- tions.
基金supported by the National Natural Science Foundation of China (61376011)Gansu Provincial Natural Science Foundation of China (17JR5RA198)the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21)
文摘Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.
基金supported by National Natural Science Foundation of China(No.51674026)the Fundamental Research Funds for the Central Universities in 2015(No.FRF-BD-15-004A)
文摘Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alkali element K is incorporated into CFTS thin films in order to fiLrther improve the surface morphology and the optical properties of related films. X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to characterize the phase purity, morphology and composition of CFTS particles and thin films. The results show that the particle elemental ratios of Cu/(Fe+Sn) and Fe/Sn are 1.2 and 0.9, respectively, which are close to the characteristics of stoichiometric CFTS. The band gaps of CFTS films before and after doping K ions are estimated to be 1.44 eV and 1.4 eV with an error of ±0.02 eV.