The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller metho...The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller method), TEM (transmission electronmicroscopy), SEM (scanning electron microscopy), XRD (X-ray diffrac-tion) and FTIR (Fourier transform-infrared) techniques. The effectsof different preparation route, prehydrolysis and non-prehydrolysis,on the properties of TiO_2/SiO_2 oxide were also examined.展开更多
A new process of WC-Co cemented carbide was developed by using nano-grained W(Co, C) composite powders as raw materials processed by high-energy ball milling. X-ray diffraetion(XRD), differential thermal analysis ...A new process of WC-Co cemented carbide was developed by using nano-grained W(Co, C) composite powders as raw materials processed by high-energy ball milling. X-ray diffraetion(XRD), differential thermal analysis (DTA), thermo-gravimetrie (TG) analysis and coercive forces of the sintered samples were adopted to analyze the phase transformation and constitution, and the microstructures of sintered samples were characterized by scanning electron microscopy(SEM). The results show that the as-milled powders are transformed into transitional phases W2C and η (Co3W3C or Co6W6C) during sintering, and finally transformed into WC and Co phases completely at 1 250℃ for 30 min, and a large number of fibrous WC grains with about 1.2μm in length and 100 nm in radial dimension are formed in the sintered body at 1 300 ℃.展开更多
The luminescent properties of terbium complex (terbium citrate) by binding to silver nanopartilces in the solution have been reported in this paper.The enhanced luminescence of the complex containing silver nanopartic...The luminescent properties of terbium complex (terbium citrate) by binding to silver nanopartilces in the solution have been reported in this paper.The enhanced luminescence of the complex containing silver nanoparticles was observed at a limited particle concentration region.The nanoparticle concentration dependence of the luminescent intensity was regarded as the result of a delicate balance between an enhancing and a quenching effect of the silver nanoparticles.Furthermore,silver nanoparticles also affected the asymmetric ratio (AS) value of terbium luminescence.We discuss the luminescent properties of the terbium complex in terms of the local electromagnetic field,refractive index,and the ligand field around terbium ion.展开更多
Due to the lipophilicity of carbon nanotubes (CNTs),the carbon nanotubes composite filter for removing oil particles in cooking fumes is synthesized. The composite filter was fabricated by the chemical vapor depositio...Due to the lipophilicity of carbon nanotubes (CNTs),the carbon nanotubes composite filter for removing oil particles in cooking fumes is synthesized. The composite filter was fabricated by the chemical vapor deposition (CVD) method. The filtration characteristics of the resultant filter and the influence of the parameters were investigated. The results show that the filtration efficiency of the CNT filter during the saturation period is 99.92%, which satisfies the high efficiency particulate air (HEPA) standard. Pressure drop increases linearly before saturation and the pressure drop at the saturation stage is only two times that of the initial stage, which is far less than that of conventional glass fiber filters. The efficiency increases by enhancing filtration velocity. Pressure drops in the composite filter at the equilibrium stage are equal under different aerosol concentrations. The increase in concentration can improve the efficiency of composite filters. Therefore, the CNT filter is suitable for decreasing oil particle pollution due to its lower increase ratio of pressure drop and higher efficiency.展开更多
A novel, cheap, disposable and single-use nanoparticles-based nanochannel platform assembled on a flexible substrate for label-free immunosensing is pre- sented. This sensing platform is formed by the dip-coating of a...A novel, cheap, disposable and single-use nanoparticles-based nanochannel platform assembled on a flexible substrate for label-free immunosensing is pre- sented. This sensing platform is formed by the dip-coating of a homogeneous and assembled monolayer of carboxylated polystyrene nanospheres (PS, 200 and 500 nm-sized) onto the working area of flexible screen-printed indium tin oxide/polyethylene terephthalate (ITO/PET) electrodes. The spaces between the self-assembled nanospheres generate well-ordered nanochannels, with inter-PS particles distances of around 65 and 24 nm respectively. The formed nanochannels are used for the effective immobilization of antibodies and subsequent protein detection based on the monitoring of [Fe(CN)6]^4- flow through diffusion and the decrease in the differential pulse voltammetric signal upon immunocomplex formation. The obtained sensing system is nanochannel-size dependent and allows human immunoglobulin G (IgG) (chosen as a model analyte) to be detected at levels of 580 ng/mL. The system also exhibits an excellent specificity against other proteins present in real samples and shows good performance with a human urine sample. The developed device represents an integrated and simple biodetection system which overcomes many of the limitations of previously reported nanochannels-based approaches and can be extended in the future to several other immuno and DNA detection systems.展开更多
基金Supported by PetroChina Company Limited (990801-21-2).
文摘The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller method), TEM (transmission electronmicroscopy), SEM (scanning electron microscopy), XRD (X-ray diffrac-tion) and FTIR (Fourier transform-infrared) techniques. The effectsof different preparation route, prehydrolysis and non-prehydrolysis,on the properties of TiO_2/SiO_2 oxide were also examined.
基金Project (50474049) supported by the National Natural Science Foundation of China
文摘A new process of WC-Co cemented carbide was developed by using nano-grained W(Co, C) composite powders as raw materials processed by high-energy ball milling. X-ray diffraetion(XRD), differential thermal analysis (DTA), thermo-gravimetrie (TG) analysis and coercive forces of the sintered samples were adopted to analyze the phase transformation and constitution, and the microstructures of sintered samples were characterized by scanning electron microscopy(SEM). The results show that the as-milled powders are transformed into transitional phases W2C and η (Co3W3C or Co6W6C) during sintering, and finally transformed into WC and Co phases completely at 1 250℃ for 30 min, and a large number of fibrous WC grains with about 1.2μm in length and 100 nm in radial dimension are formed in the sintered body at 1 300 ℃.
文摘The luminescent properties of terbium complex (terbium citrate) by binding to silver nanopartilces in the solution have been reported in this paper.The enhanced luminescence of the complex containing silver nanoparticles was observed at a limited particle concentration region.The nanoparticle concentration dependence of the luminescent intensity was regarded as the result of a delicate balance between an enhancing and a quenching effect of the silver nanoparticles.Furthermore,silver nanoparticles also affected the asymmetric ratio (AS) value of terbium luminescence.We discuss the luminescent properties of the terbium complex in terms of the local electromagnetic field,refractive index,and the ligand field around terbium ion.
基金The National Natural Science Foundation of China(No.51576043)
文摘Due to the lipophilicity of carbon nanotubes (CNTs),the carbon nanotubes composite filter for removing oil particles in cooking fumes is synthesized. The composite filter was fabricated by the chemical vapor deposition (CVD) method. The filtration characteristics of the resultant filter and the influence of the parameters were investigated. The results show that the filtration efficiency of the CNT filter during the saturation period is 99.92%, which satisfies the high efficiency particulate air (HEPA) standard. Pressure drop increases linearly before saturation and the pressure drop at the saturation stage is only two times that of the initial stage, which is far less than that of conventional glass fiber filters. The efficiency increases by enhancing filtration velocity. Pressure drops in the composite filter at the equilibrium stage are equal under different aerosol concentrations. The increase in concentration can improve the efficiency of composite filters. Therefore, the CNT filter is suitable for decreasing oil particle pollution due to its lower increase ratio of pressure drop and higher efficiency.
文摘A novel, cheap, disposable and single-use nanoparticles-based nanochannel platform assembled on a flexible substrate for label-free immunosensing is pre- sented. This sensing platform is formed by the dip-coating of a homogeneous and assembled monolayer of carboxylated polystyrene nanospheres (PS, 200 and 500 nm-sized) onto the working area of flexible screen-printed indium tin oxide/polyethylene terephthalate (ITO/PET) electrodes. The spaces between the self-assembled nanospheres generate well-ordered nanochannels, with inter-PS particles distances of around 65 and 24 nm respectively. The formed nanochannels are used for the effective immobilization of antibodies and subsequent protein detection based on the monitoring of [Fe(CN)6]^4- flow through diffusion and the decrease in the differential pulse voltammetric signal upon immunocomplex formation. The obtained sensing system is nanochannel-size dependent and allows human immunoglobulin G (IgG) (chosen as a model analyte) to be detected at levels of 580 ng/mL. The system also exhibits an excellent specificity against other proteins present in real samples and shows good performance with a human urine sample. The developed device represents an integrated and simple biodetection system which overcomes many of the limitations of previously reported nanochannels-based approaches and can be extended in the future to several other immuno and DNA detection systems.