A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distrib...A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.展开更多
Nanotwinned cubic boron nitride(nt-cBN) with remarkable hardness, toughness, and stability has attracted widespread attention due to its distinct scientific and industrial importance. The key for nt-cBN synthesis is t...Nanotwinned cubic boron nitride(nt-cBN) with remarkable hardness, toughness, and stability has attracted widespread attention due to its distinct scientific and industrial importance. The key for nt-cBN synthesis is to adopt an onion-like BN(oBN) nano-precursor and induce phase transition under high pressure. Here, we found that the size change of oBN used greatly affected the mechanical performance of products. With the precursor size decreasing from^320 to 90 nm, the Vickers hardness of nanostructured products improved from 61 to 108 GPa, due to the fact that large oBN nanoparticles possessed more flattened, orderly and graphite-like shell layers, in sharp contrast to the highly wrinkled and imperfect layers in small-diameter nanoparticles, thus resulting in the apparent reduction of ultrafinetwin substructure in the synthetic products. This study reveals that only small oBN precursor could produce complete ultrafine nt-cBN with outstanding performance. A practical route was proposed to further improve the performance of this important material.展开更多
基金The National Key Research and Development Program of China(No.2017YFA0104302)the National Natural Science Foundation of China(No.51832001,61821002,81971750).
文摘A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.
基金the financial support of the National Natural Science Foundation of China(51472213,51332005,51572235,51722209 and 51525205)the National Key R&D Program of China+3 种基金the 100 Talents Plan of Hebei Province(E2016100013)the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China(E2018203349)the Key R&D Program of Hebei Province of China(17211110D)China Postdoctoral Science Foundation(2017M620097)
文摘Nanotwinned cubic boron nitride(nt-cBN) with remarkable hardness, toughness, and stability has attracted widespread attention due to its distinct scientific and industrial importance. The key for nt-cBN synthesis is to adopt an onion-like BN(oBN) nano-precursor and induce phase transition under high pressure. Here, we found that the size change of oBN used greatly affected the mechanical performance of products. With the precursor size decreasing from^320 to 90 nm, the Vickers hardness of nanostructured products improved from 61 to 108 GPa, due to the fact that large oBN nanoparticles possessed more flattened, orderly and graphite-like shell layers, in sharp contrast to the highly wrinkled and imperfect layers in small-diameter nanoparticles, thus resulting in the apparent reduction of ultrafinetwin substructure in the synthetic products. This study reveals that only small oBN precursor could produce complete ultrafine nt-cBN with outstanding performance. A practical route was proposed to further improve the performance of this important material.