Docetaxel (DTX) was incorporated into albumin nanoparticles to form the docetaxel loaded nanoparticles (DTX-NPs) with a high-pressure homogenization method. The purpose of this procedure was to improve the solubil...Docetaxel (DTX) was incorporated into albumin nanoparticles to form the docetaxel loaded nanoparticles (DTX-NPs) with a high-pressure homogenization method. The purpose of this procedure was to improve the solubility, stability and biocompatibility of DTX. In our study, particle size, zeta potential, size distribution, and encapsulation efficiency were investigated. The crystalloid state of DTX in nanoparticles was further determined by the X-ray diffraction technique. The hemolysis rate, pharmacokinetics and pharmacodynamics of the DTX-NPs were analyzed and compared with the injectable docetaxel solution (DTX-Sol), which was fabricated according to the formulation of the commercial Taxotere. It demonstrated that the DTX-NPs were prepared successfully with these properties, including the (193±4) nm size, (-30±1) mV zeta potential and 69%±2% encapsulation efficiency. Higher stability was achieved in the lyophilized nanoparticles compared to that in the nanoparticle suspension. Furthermore, less hemolysis effect was observed in the DTX-NPs than that in the DTX-Sol. The pharmacokinetic and pharmacodynamic behaviors of the DTX-NPs were similar as that of DTX-Sol based on the in vivo experiments. In conclusion, albumin nanoparticles may act as a useful and safe carder for DTX.展开更多
Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a dou...Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a double emulsion-solvent evaporation(DESE) method. The particle size and drug encapsulation efficacy(EE) were compared to evaluate and optimize the preparation parameters. The mixed NPs had average size ranging from(102±1) nm to(137±5) nm, and the zeta potential turned to positive with incorporation of the amphiphilic dendrimer. The NPs showed different EE of docetaxel(DTX) and paclitaxel(PTX) with higher affinity to more lipophilic PTX. The blank mixed NPs showed little cytotoxicity, and the DTX-loaded NPs could effectively facilitate the antiproliferation activity on PC-3 cells. The NPs could be used as an effective drug delivery system, and its anti-tumor effect is worthy of further study.展开更多
基金国家自然科学基金面上项目,广东省科技计划项目(2011B010400018,2013B010404024)National Natural Science Foundation of China General Program,Science and Technology Planning Project of Guangdong Province of China
基金National Natural Science Foundation of China (Grant No.30430760)National Basic Research Program of China (973 Program,Grant No.2007CB935800 and 2009CB930300)
文摘Docetaxel (DTX) was incorporated into albumin nanoparticles to form the docetaxel loaded nanoparticles (DTX-NPs) with a high-pressure homogenization method. The purpose of this procedure was to improve the solubility, stability and biocompatibility of DTX. In our study, particle size, zeta potential, size distribution, and encapsulation efficiency were investigated. The crystalloid state of DTX in nanoparticles was further determined by the X-ray diffraction technique. The hemolysis rate, pharmacokinetics and pharmacodynamics of the DTX-NPs were analyzed and compared with the injectable docetaxel solution (DTX-Sol), which was fabricated according to the formulation of the commercial Taxotere. It demonstrated that the DTX-NPs were prepared successfully with these properties, including the (193±4) nm size, (-30±1) mV zeta potential and 69%±2% encapsulation efficiency. Higher stability was achieved in the lyophilized nanoparticles compared to that in the nanoparticle suspension. Furthermore, less hemolysis effect was observed in the DTX-NPs than that in the DTX-Sol. The pharmacokinetic and pharmacodynamic behaviors of the DTX-NPs were similar as that of DTX-Sol based on the in vivo experiments. In conclusion, albumin nanoparticles may act as a useful and safe carder for DTX.
基金National Natural Science Foundation of China(Grant No.81473156,81673365,81273454)Doctoral Foundation of the Ministry of Education(Grant No.20130001110055)National Key Basic Research Program(Grant No.2013CB932501)
文摘Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles(NPs) by a double emulsion-solvent evaporation(DESE) method. The particle size and drug encapsulation efficacy(EE) were compared to evaluate and optimize the preparation parameters. The mixed NPs had average size ranging from(102±1) nm to(137±5) nm, and the zeta potential turned to positive with incorporation of the amphiphilic dendrimer. The NPs showed different EE of docetaxel(DTX) and paclitaxel(PTX) with higher affinity to more lipophilic PTX. The blank mixed NPs showed little cytotoxicity, and the DTX-loaded NPs could effectively facilitate the antiproliferation activity on PC-3 cells. The NPs could be used as an effective drug delivery system, and its anti-tumor effect is worthy of further study.