为改善魔芋葡甘聚糖(KGM)凝胶的黏弹性、凝胶强度以及在高温下的热性能,在1.5 g KGM中分别加入0.2、0.5、0.8、1.0 g的羧基化纤维素纳米晶须(CCNC),制得CCNC/KGM复合水凝胶并做空白对照。利用流变仪分析不同配比下的CCNC/KGM的流体行为,...为改善魔芋葡甘聚糖(KGM)凝胶的黏弹性、凝胶强度以及在高温下的热性能,在1.5 g KGM中分别加入0.2、0.5、0.8、1.0 g的羧基化纤维素纳米晶须(CCNC),制得CCNC/KGM复合水凝胶并做空白对照。利用流变仪分析不同配比下的CCNC/KGM的流体行为,对CCNC/KGM水凝胶的微观结构、特征官能团进行表征,并分析其热重情况。结果表明,CCNC添加量为0.8 g以内,CCNC/KGM复合凝胶体系黏度逐渐加大。扫描电镜结果显示,CCNC的添加量在0.8 g时,CCNC与KGM协同所形成的凝胶网状结构空隙丰富,且在熔融状态出现后,此复配比下的凝胶质量损失较纯KGM水凝胶降低了近50%,在高温中表现出更好的热性能,并保留了一定的凝胶特性;因此CCNC和KGM质量比约为0.8∶1.5时,水凝胶的黏弹性、凝胶强度以及高温下的热性能均达到最优,凝胶特性凸显。展开更多
对微纳米天丝原纤化纤维的溶剂置换干燥过程进行研究,从溶剂的表面张力、溶剂与纤维的接触角、不同溶剂的配比及置换阶数等方面进行溶剂置换工艺的优化;采用溶剂置换干燥后纤维的微观结构、比表面积等测试结果来考察溶剂置换干燥的效果...对微纳米天丝原纤化纤维的溶剂置换干燥过程进行研究,从溶剂的表面张力、溶剂与纤维的接触角、不同溶剂的配比及置换阶数等方面进行溶剂置换工艺的优化;采用溶剂置换干燥后纤维的微观结构、比表面积等测试结果来考察溶剂置换干燥的效果,并与未溶剂置换处理的干燥效果进行对比。实验结果表明,在使用叔丁醇溶剂时,微纳米天丝原纤化纤维的溶剂置换及干燥效果更好;对比分析不同干燥方式、不同脱气温度下比表面积测试结果,发现当使用叔丁醇溶剂置换冷冻干燥方式且脱气温度为105℃时,微纳米天丝原纤化纤维的B. E. T比表面积测试值结果最高,为29.9 m^(2)/g,而在同样实验条件下,直接冷冻干燥后微纳米天丝原纤化纤维的B. E. T比表面积测试值仅为15.6 m^(2)/g。展开更多
文摘对微纳米天丝原纤化纤维的溶剂置换干燥过程进行研究,从溶剂的表面张力、溶剂与纤维的接触角、不同溶剂的配比及置换阶数等方面进行溶剂置换工艺的优化;采用溶剂置换干燥后纤维的微观结构、比表面积等测试结果来考察溶剂置换干燥的效果,并与未溶剂置换处理的干燥效果进行对比。实验结果表明,在使用叔丁醇溶剂时,微纳米天丝原纤化纤维的溶剂置换及干燥效果更好;对比分析不同干燥方式、不同脱气温度下比表面积测试结果,发现当使用叔丁醇溶剂置换冷冻干燥方式且脱气温度为105℃时,微纳米天丝原纤化纤维的B. E. T比表面积测试值结果最高,为29.9 m^(2)/g,而在同样实验条件下,直接冷冻干燥后微纳米天丝原纤化纤维的B. E. T比表面积测试值仅为15.6 m^(2)/g。