Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials...Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials usually deteriorates under diverse temperature and humidity conditions.Therefore, it is highly essential to construct a bulk material that exhibits outstanding thermal insulation performance under extremely humid and hot environment. In this work, we have conceived a green and effective strategy to fabricate a superhydrophobic and compressible polyvinylidene fluoride/polyimide(PVDF/PI) nanofiber composite aerogel via electrospinning and freeze-drying technique. Interestingly, the PVDF nanofibers and PI nanofibers function as the hydrophobic fibrous framework and mechanical support skeleton,respectively, forming a robust three-dimensional framework with good mechanical flexibility. The PVDF/PI aerogel possesses outstanding superhydrophobic feature(water contact angle of 152°) and low thermal conductivity(31.0 m W m^(-1)K^(-1))at room temperature. Significantly, even at 100% relative humidity(80℃), the PVDF/PI aerogel still exhibits a low thermal conductivity of only 48.6 m W m^(-1)K^(-1), which outperforms the majority of commercial thermal insulating materials. Therefore, the novel PVDF/PI aerogel is promising as an excellent thermal insulating material for the applications in high-temperature and humid environment.展开更多
基金the financial support from the National Natural Science Foundation of China (21674019 and 21704014)the Fundamental Research Funds for the Central Universities(2232019A3-03)+3 种基金the Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2019006)Shanghai Sailing Program(17YF1400200)Shanghai Municipal Education Commission (17CG33)the Ministry of Education of the People’s Republic of China(6141A0202202)。
文摘Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials usually deteriorates under diverse temperature and humidity conditions.Therefore, it is highly essential to construct a bulk material that exhibits outstanding thermal insulation performance under extremely humid and hot environment. In this work, we have conceived a green and effective strategy to fabricate a superhydrophobic and compressible polyvinylidene fluoride/polyimide(PVDF/PI) nanofiber composite aerogel via electrospinning and freeze-drying technique. Interestingly, the PVDF nanofibers and PI nanofibers function as the hydrophobic fibrous framework and mechanical support skeleton,respectively, forming a robust three-dimensional framework with good mechanical flexibility. The PVDF/PI aerogel possesses outstanding superhydrophobic feature(water contact angle of 152°) and low thermal conductivity(31.0 m W m^(-1)K^(-1))at room temperature. Significantly, even at 100% relative humidity(80℃), the PVDF/PI aerogel still exhibits a low thermal conductivity of only 48.6 m W m^(-1)K^(-1), which outperforms the majority of commercial thermal insulating materials. Therefore, the novel PVDF/PI aerogel is promising as an excellent thermal insulating material for the applications in high-temperature and humid environment.