期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用HRTEM对石墨烯材料单层厚度测量的研究 被引量:6
1
作者 王琛英 景蔚萱 +3 位作者 蒋庄德 林启敬 韩枫 李磊 《计量学报》 CSCD 北大核心 2017年第2期145-148,共4页
将石墨烯材料薄膜制成可以通过高分辨透射电子显微镜(HRTEM)观察的横截面样,在室温20℃,变换放大倍数,通过HRTEM自带的测量软件得到的单次测量值为0.411mm,同时可以看到石墨烯材料形貌较清晰,其剖面结构并不是理想的笔直直线。通过局部... 将石墨烯材料薄膜制成可以通过高分辨透射电子显微镜(HRTEM)观察的横截面样,在室温20℃,变换放大倍数,通过HRTEM自带的测量软件得到的单次测量值为0.411mm,同时可以看到石墨烯材料形貌较清晰,其剖面结构并不是理想的笔直直线。通过局部剪切图和增大间隙图,提取石墨烯材料单层的边缘数据。通过直方图法获得其单层厚度的测量值,厚度均值为0.390 nm,厚度重复性测量不确定度为0.042 nm。在置信水平为95%的条件下,计算得到石墨烯材料的单层厚度为(0.390±0.086)nm。相对石墨烯厚度的公称值,石墨烯材料的单层厚度偏大,分析认为石墨烯材料层与层之间紧密连接度不够,造成单层厚度与石墨烯厚度存在差异。 展开更多
关键词 计量学 石墨烯材料 单层厚度 纳米级高度 高分辨透射电子显微镜 不确定度
下载PDF
Rationally designed carbon-coated Fe304 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries 被引量:12
2
作者 Fei Han Lingjuan Ma +2 位作者 Qiang sun Cheng Lei Anhui Lu 《Nano Research》 SCIE EI CAS CSCD 2014年第11期1706-1717,共12页
Fe3O4 is a promising high-capacity anode material for lithium ion batteries, but challenges including short cycle life and low rate capability hinder its widespread implementation. In this work, a well-defined tubular... Fe3O4 is a promising high-capacity anode material for lithium ion batteries, but challenges including short cycle life and low rate capability hinder its widespread implementation. In this work, a well-defined tubular structure constructed by carbon-coated Fe3O4 has been successfully fabricated with hierarchically porous structure, high surface area, and suitable thickness of carbon layer. Such purposely designed hybrid nanostructures have an enhanced electronic/ionic conductivity, stable electrode/electrolyte interface, and physical buffering effect arising from the nanoscale combination of carbon with Fe3O4, as well as the hollow, aligned and hierarchically porous architectures. When used as an anode material for a lithium-ion half cell, the carbon-coated hierarchical Fe3O4 nanotubes showed excellent cycling performance with a specific capacity of 1,020 mAh.g^-1 at 200 mA.g^-1 after 150 cycles, a capacity retention of ca. 103%. Even at a higher current density of 1,000 mA·g^-1, a capacity of 840 mAh·g^-1 is retained after 300 cycles with no capacity loss. In particular, a superior rate capability can be obtained with a stable capacity of 355 mAh.g^-1 at 8,000 mA·g^-1. The encouraging results indicate that hierarchically tubular hybrid nanostructures can have important implications for the development of high-rate electrodes for future rechargeable lithium ion batteries (LIBs). 展开更多
关键词 NANOTUBE carbon FE3O4 rate capability cycle stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部