期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
美国材料学会2001年度秋季会议在波士顿召开
1
《新材料产业》 2001年第12期4-4,共1页
关键词 美国材料学会 波士顿 纳米组合材料 单原子操纵 发光技术 无机电子材料 微光子材料
下载PDF
Al-matrix composite based on Al-Ca-Ni-La system additionally reinforced by L12 type nanoparticles 被引量:2
2
作者 Torgom K.AKOPYAN Nikolay A.BELOV +2 位作者 Evgeniya A.NAUMOVA Nikolay V.LETYAGIN Tat'yana A.SVIRIDOVA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期850-862,共13页
The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe ana... The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe analysis and X-ray diffraction).Based on the phase equilibria data obtained,the experimental projection of the liquidus surface and solid state phase-field distribution of the Al?Ca?Ni?La system have been proposed.Microstructure studies reveal that the alloys with the 2?4 wt.%Ca,2?4 wt.%Ni and 1?3 wt.%La ranges have an ultra-fine hypoeutectic structure with 30%volume fraction of eutectic intermetallics,which allows one to classify these alloys as natural Al-matrix composites.The ultra-fine eutectic structure produces significant strengthening,the magnitude of which can be well described using the modified Orowan looping mechanism model.Small additives of Zr and Sc(0.2 and 0.1 wt.%,respectively)lead to significant strengthening(by^25%)due to the formation of L12 type phase(Al3(Zr,Sc))nanoparticles during annealing of the alloy at 350?400℃.Due to the high volume fraction of eutectic intermetallics,the new alloys have low coefficients of thermal expansion and high thermal stability of the structure and mechanical properties. 展开更多
关键词 Al-Ca alloys EUTECTIC INTERMETALLICS phase diagram rare earth element NANOCOMPOSITE microstructure mechanical properties
下载PDF
Fabrication of AA2024−TiO2 nanocomposites through stir casting process 被引量:6
3
作者 Mehrdad SHAYAN Beitallah EGHBALI Behzad NIROUMAND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2891-2903,共13页
Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by emp... Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by employing the stir casting method.The structural properties of the produced samples were then investigated by optical microscopy and scanning electron microscopy;their mechanical properties were also addressed by hardness and tensile tests.The results showed that adding 1 vol.%TiO2 nanoparticles reduced the grain size and dendrite arm spacing by about 66%and 31%,respectively.Also,hardness,ultimate tensile strength,yield strength,and elongation of AA2024−1vol.%TiO2(np)composite were increased by about 25%,28%,4%and 163%,respectively,as compared to those of the monolithic component.The agglomerations of nanoparticles in the structure of nanocomposites were found to be a factor weakening the strength against the strengthening mechanisms.Some agglomerations of nanoparticles in the matrix were detected on the fractured surfaces of the tension test specimens. 展开更多
关键词 AA2024−TiO2 nanocomposites mechanical properties MICROSTRUCTURE fracture surface stir casting process
下载PDF
Microstructure and dry sliding wear behavior of Cu-Sn alloy reinforced with multiwalled carbon nanotubes 被引量:3
4
作者 H.M.MALLIKARJUNA K.T.KASHYAP +2 位作者 P.G.KOPPAD C.S.RAMESH R.KESHAVAMURTHY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1755-1764,共10页
Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocompo... Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs. 展开更多
关键词 Cu-Sn alloy carbon nanotube NANOCOMPOSITES powder metallurgy MICROSTRUCTURE sliding wear
下载PDF
Monodisperse Ultra-Large-Pore Silica Coated Polystyrene Core-Shell Microbeads via Layer-by-Layer Assembly for Nano-Micro Composite
5
作者 谢闯 刘逸卿 +4 位作者 李泓达 郝红勋 王永莉 尹秋响 王静康 《Transactions of Tianjin University》 EI CAS 2015年第5期420-426,共7页
Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nan... Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nanoparticles synthesized via modified St6ber method and cationic poly (diallyldimethylammonium chloride) were alternately adsorbed on the surface of microbeads. Zeta potential, size, and morphology of the microbeads were monitored during LBL assembly process to ensure the successful deposition of silica nanoparticles. The porous shell was characterized using nitrogen adsorption and desorption analyses, and the surface area, volume and diame- ter of the pores were derived. It is found that the porous shell thickness and the pore size can be tuned by changing the coating times of silica nanoparticles. Finally, PS@SiO2 core-shell microbeads with 5 grn PS solid core and 350 nm mesoporous shell (mean BJH pore diameter is ~27 nm) were used to load CdSe/ZnS quantum dots (QDs). The fluorescence microscopic image and the optical amplification of the QDs-embedded microbeads (QDBs) indicate that the as-prepared core-shell microbeads can provide adequate space for QDs and may be useful for further application of nano-micro composites. 展开更多
关键词 large pore mesoporous silica core-sheU structure MICROBEADS layer-by layer assembly nano-microcomposite amplified spontaneous emission
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部