The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradi...The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradient approximations. It is found that the interface structure and adhesion, which determine the mechanical and thermal properties, are sensitive to the surface mor- phology. We also provide an analysis of adhesion of ZrO2/A1203 interface as a function of thickness of each layer. With the in- crease of ZrO2 thickness, both covalence and ionicity of the interfacial bonds are enhanced, which results in more strongly coupled interfaces while the ionic interaction decreases for thicker Al2O3 layers, which results in weakly coupled interfaces. A first-principles calculation method has been proposed to design nanomultilayer materials to achieve the demanded adhesion.展开更多
文摘The electronic structure, atomic geometry and energetic properties of ceramic nanomultilayer have been systematically studied with first principles density functional theory calculations based on the generalized gradient approximations. It is found that the interface structure and adhesion, which determine the mechanical and thermal properties, are sensitive to the surface mor- phology. We also provide an analysis of adhesion of ZrO2/A1203 interface as a function of thickness of each layer. With the in- crease of ZrO2 thickness, both covalence and ionicity of the interfacial bonds are enhanced, which results in more strongly coupled interfaces while the ionic interaction decreases for thicker Al2O3 layers, which results in weakly coupled interfaces. A first-principles calculation method has been proposed to design nanomultilayer materials to achieve the demanded adhesion.