Multishell nanotubes of polyaniline and carbon were synthesized via a template approach. A thin layer of MnO2 coated on carbon nanotubes acts as a reactive template for the consequent formation of the polyaniline coat...Multishell nanotubes of polyaniline and carbon were synthesized via a template approach. A thin layer of MnO2 coated on carbon nanotubes acts as a reactive template for the consequent formation of the polyaniline coating. The polyaniline-carbon nanotubes show enhanced dispersibility in water and can be possibly used as a functional material of electrochemical capacitors with improved performance. The general method operates by coating carbon nanotubes on functional materials such as poly (3,4-ethylenedioxythiophene), polypyrrole, silica, and carbon.展开更多
Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental comp...Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.展开更多
Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were charac...Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were characterized by powder X-ray diffraction,energy dispersive X-ray analysis,selected area electron diffraction,high-resolution transmission electron microscopy,scanning electron microscopy and BET measurements.The research results show that the hollow Cu_(0.3)Co_(2.7)O_(4) microspheres consist of single-crystalline nanocubes with the diameter of about 20 nm.The formation mechanism of hollow Cu_(0.3)Co_(2.7)O_(4) microspheres is suggested as Ostwald ripening in a solid-solution-solid process,and Cu_(0.3)Co_(2.7)O_(4) microspheres are mesoporous containing two pore sizes of 3.3 and 5.9 nm.The as-prepared Cu_(0.3)Co_(2.7)O_(4) sensors have optimal gas responses to 50×10^(−6) mg/m^(3) C_(2)H_(5)OH at 190℃.展开更多
Using ethylene glycol as solvent and reductant, CuCl2-2H2O, (NH2)2CS and self-prepared GaCl3 as the starting materials, CuGaS2 nanostrucutures were synthesized on a large scale at 220℃. Powder X-ray diffraction. tr...Using ethylene glycol as solvent and reductant, CuCl2-2H2O, (NH2)2CS and self-prepared GaCl3 as the starting materials, CuGaS2 nanostrucutures were synthesized on a large scale at 220℃. Powder X-ray diffraction. transmission electron microscopy, field-emission scanning electron microscope, high-resolution transmission electron microscopy" and X-ray" photoelectron spectroscopy were used to characterize the products. It demonstrated the evolution of the CuGaS2 particles from spherical assemblies to flowerlike morphology, over time, at 220℃. Simultaneously, we elucidated the specific roles of reaction temperature, reaction time and solvent in the formation of the final CuGaS2 nanostructures. A possible formation mechanism of CuGaS2 nanostrucutures was also discussed. The room temperature photoluminescence spectrum showed blue-shift and an increase of intensity, with a decrease in the sizes of CuGaS2 particles.展开更多
Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green ...Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green method.The XRD result shows that both pure CdS and ZnS and their doped derivatives are of high crystalline with hexagonal packing structure.The average crystalline size of all nanoparticles was calculated using Debye-Scherrer formula.The crystalline size of nanoparticles of pure samples varied with that of the doped sample.The average crystalline sizes of all nanoparticles are found to be in the range of 5.5-2.2 nm for CdS(from pure to doped) and 4.3-3.4 nm for ZnS,respectively.The band gap values obtained from UV-visible spectra are in the range of 3.5-2.1 e V for CdS and 3.3-2.7 e V for ZnS derivatives,respectively.The FTIR spectral data give characteristic peaks for Cd—S,Cu—S,Ag—S and Zn—S bonds and confirm the formation of respective nanoparticles.The peaks corresponding to the microstructural formation are also observed.The FE-SEM images show the granular morphological structure for all the samples.The agglomeration size of the samples in the range of 10-50 nm for CdS:Cu and 50-100 nm for ZnS:Cu is observed.展开更多
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also...Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.展开更多
Natural anisotropic nanostructures occurring in several organisms have gained more and more attention because of their obvious advantages in sensitivity, stability, security, miniaturization, portability, online use, ...Natural anisotropic nanostructures occurring in several organisms have gained more and more attention because of their obvious advantages in sensitivity, stability, security, miniaturization, portability, online use, and remote monitoring. Due to the development of research on nature-inspired bionic structures and the demand for highly efficient, low-cost microfabrication techniques, an understanding of and the ability to replicate the mechanism of structural coloration have become increasingly significant. These sophisticated structures have many unique functions and are used in many applications. Many sensors have been proposed based on their novel structures and unique optical properties. Several of these bio-inspired sensors have been used for infrared radiation/thermal, pH, and vapor techniques, among others, and have been discussed in detail, with an intense focus on several biomedical applications. However, many applications have yet to be discovered. In this review, we will describe these nanostructured materials based on their sources in nature and various structures, such as layered, hierarchical, and helical structures. In addition, we discuss the functions endowed by these structures, such as superhydrophobicity, adhesion, and high strength, enabling them to be employed in a number of applications in biomedical fields, including cell cultivation, biosensors, and tissue engineering.展开更多
In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were ...In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.展开更多
The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellenc...The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellency and water repellency. The results of IR(infrared) Spectrometer analysis revealed: The nano material combines through the strong bonds with the surface of cashmere fibers by the live groups. These analyses by SEM techniques showed that the nano material was distributed on the fiber surface even, and the nano material formed the strong peak of the regular crystal phase structure using the X-Ray Diffractometry (XRD) to analysis the fabric. The optimum techniques were selected by a series of experiments, coated cashmere fabric not only has preserved original properties of softness and comfort, but also has good properties of Bi-repellency function. Therefore, the technique will have potential appfication in engineers.展开更多
Mercury sulfide (HgS) crystals with different morphologies and particle sizes, were obtained via a simple microwave reaction by a new precursor complex, [bis ((2-suphanylphenyl)imino]methylphenol) Hg(II)] ([Hg(C13H11N...Mercury sulfide (HgS) crystals with different morphologies and particle sizes, were obtained via a simple microwave reaction by a new precursor complex, [bis ((2-suphanylphenyl)imino]methylphenol) Hg(II)] ([Hg(C13H11NSO)2]2+). The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV?Vis) spectroscopy. Mercury sulfide nanostructures with different sizes were prepared. The effects of precursor concentration, type of solvent, microwave time, and power on the particle size and morphology were investigated. The results show that the type of solvent and microwave power play key roles in the final size of HgS. Ethylene glycol is the best solvent for the synthesis of very fine particles of HgS, and the best power for the preparation of HgS nanoparticles with uniform size distribution is 900 W. The band gap for HgS nanoparticles calculated by UV–Vis spectrum was 3.2 eV which had about 1.2 eV blue shift in comparison with the band gap of 2 eV for bulk sample.展开更多
Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morpholog...Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morphology, homogeneity and grain size of Cu?Ni nanoparticles were investigated. Both the parameters significantly affect the crystalline structure, composition and grain size. Cu?Ni alloys prepared at pH value of 1 do not contain impurities, and their compositions are Cu0.42Ni0.58, Cu0.45Ni0.55 and Cu0.52Ni0.48 reduced at 300, 400 and 500 °C, respectively. The grain size grows with the increase of calcination temperature for the precursor prepared at pH values of 1.6 and 3. The Ni content of the alloys gradually increases with the increase of calcination temperature at pH value of 3.展开更多
Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still rem...Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still remains unclear.Herein,water-gas shift reaction at Pt-NiO interfaces has been in-situ explored using surface-enhanced Raman spectroscopy by construction of Au@Pt@NiO nanostructures.Direct Raman spectroscopic evidence demonstrates that water-gas shift reaction at Pt-NiO interfaces proceeds via an associative mechanism with the carbonate species as a key intermediate.The carbonate species is generated through the reaction of adsorbed CO with gaseous water,and its decomposition is a slow step in water-gas shift reaction.Moreover,the Pt-NiO interfaces would promote the formation of this carbonate intermediate,thus leading to a higher activity compared with pure Pt.This spectral information deepens the fundamental understanding of the reaction mechanism of water-gas shift reaction,which would promote the design of more efficient catalysts.展开更多
The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- na...The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.展开更多
Lipid nanoparticles have become attractive for its prominent properties recent years. In this paper, in vivo anti-tumor efficacy of nanostructured lipid carrier of dihydroartemisinin (DHA-NLC) were evaluated in sarc...Lipid nanoparticles have become attractive for its prominent properties recent years. In this paper, in vivo anti-tumor efficacy of nanostructured lipid carrier of dihydroartemisinin (DHA-NLC) were evaluated in sarcoma 180-bearing mice model through intraperitoneal (i.p.) administration. In vivo biodistribution was also investigated in Kunming mice bearing S180. Results demonstrated that the intraperitoneally injected DHA-NLC could significantly inhibit tumor growth at the dose levels of 20, 40 and 80 mg/kg, and their inhibition rates were 71.24%, 79.20% and 85.74%, respectively. The biodistribution of DHA after intraperitoneal injection of DHA-NLC in S180-bearing mice is remarkably different from the DHA solution. Therefore, DHA encapsulated in NLC does demonstrate superior anticancer effect to DHA suspension on S 180-bearing mice at the same dose and displayed a dose-dependent antitumor efficacy.展开更多
Au nanoparticles have been used in biomedical applications since ancient times. However, the rapid development of nanotechnology over the past century has led to recognition of the great potential of Au nanoparticles ...Au nanoparticles have been used in biomedical applications since ancient times. However, the rapid development of nanotechnology over the past century has led to recognition of the great potential of Au nanoparticles in a wide range of applications. Advanced fabrication techniques allow us to synthesize a variety of Au nanostructures possessing physiochemical properties that can be exploited for different purposes. Functionalization of the surface of Au nanoparticles further eases their application in various roles. These advantages of Au nanoparticles make them particularly suited for cancer treatment and diagnosis. The small size of Au particles enables them to preferentially accumulate at tumor sites to achieve in vivo targeting after systemic administration. Efficient light absorption followed by rapid heat conversion makes them very promising in photothermal therapy. The facile surface chemistry of Au nanoparticles eases delivery of drugs, ligands or imaging contrast agents in vivo. In this review, we summarize recent development of Au nanoparticles in cancer theranostics including imaging-based detection, photothermal therapy, chemical therapy and drug delivery. The multifunctional nature of Au nanoparticles means they hold great promise as novel anti-cancer therapeutics.展开更多
Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mech...Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mechanical stability, light weight, low cost and ease in material processing. Compared with bulk CPs, nanostructured CPs possess higher electrical conductivity, larger surface area, superior electro- chemical activity, which make them suitable for various ap- plications. Hybridization of CPs with other nanomaterials has obtained promising functional nanocomposites and achieved improved performance in different areas, such as energy sto- rage, sensors, energy harvesting and protection applications. In this review, recent progress on nanostructured CPs and their composites is summarized from research all over the world in more than 400 references, especially from the last three years. The relevant synthesizing experiences are outlined and abundant application examples are illustrated. The ap- proaches of production of nanostructured CPs are discussed and the efficacy and benefits of newest trends for the pre- paration of multifunctional nanomaterials/nanocomposites are presented. Mechanism of their electrical conductivity and the ways to tailor their properties are investigated. The re- maining challenges in developing better CPs based nanoma- terials are also elaborated.展开更多
Lithium-sulfur(Li-S)batteries have attracted significant attention for their high specific capacity,non-toxic and harmless advantages.However,the shuttle effect limits their development.In this work,small-sized tin di...Lithium-sulfur(Li-S)batteries have attracted significant attention for their high specific capacity,non-toxic and harmless advantages.However,the shuttle effect limits their development.In this work,small-sized tin disulfide(SnS_(2))nanoparticles are embedded between interlayers of twodimensional porous carbon nanosheets(PCNs),forming a multi-functional nanocomposite(PCN-SnS_(2))as a cathode carrier for Li-S batteries.The graphitized carbon nanosheets improve the overall conductivity of the electrode,and the abundant pores not only facilitate ion transfer and electrolyte permeation,but also buffer the volume change during the charge and discharge process to ensure the integrity of the electrode material.More importantly,the physical confinement of PCN,as well as the strong chemical adsorption and catalytic reaction of small SnS_(2)nanoparticles,synergistically reduce the shuttle effect of polysulfides.The interaction between a porous layered structure and physical-chemical confinement gives the PCN-SnS_(2)-S electrode high electrochemical performance.Even at a high rate of 2 C,a discharge capacity of 650 mA h g^(-1)is maintained after 150 cycles,underscoring the positive results of SnS_(2)-based materials for Li-S batteries.The galvanostatic intermittent titration technique results further confirm that the PCN-SnS_(2)-S electrode has a high Li+transmission rate,which reduces the activation barrier and improves the electrochemical reaction kinetics.This work provides strong evidence that reducing the size of SnS_(2)nanostructures is beneficial for capturing and reacting with polysulfides to alleviate their shuttle effect in Li-S batteries.展开更多
Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the...Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarders and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic im- provements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of func- tional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carders for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imag- ing probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nano- medicine approaches to clinical applications are discussed.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Key Fundamental Research Project (No.2007CB936300),the National Natural Science Foundation of China (No.60706019, No.60990314, No.60928009, and No.61076017), the Natural Science Foundation of Jiangsu Province (BK2008025), and the New Century Excellent Talents-430.
文摘Multishell nanotubes of polyaniline and carbon were synthesized via a template approach. A thin layer of MnO2 coated on carbon nanotubes acts as a reactive template for the consequent formation of the polyaniline coating. The polyaniline-carbon nanotubes show enhanced dispersibility in water and can be possibly used as a functional material of electrochemical capacitors with improved performance. The general method operates by coating carbon nanotubes on functional materials such as poly (3,4-ethylenedioxythiophene), polypyrrole, silica, and carbon.
基金Project(51261015)supported by the National Natural Science Foundation of ChinaProject(1308RJZA238)supported by the Natural Science Foundation of Gansu Province,China
文摘Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.
基金Project(51202066)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0784)supported by the Program for New Century Excellent Talents in University of China。
文摘Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were characterized by powder X-ray diffraction,energy dispersive X-ray analysis,selected area electron diffraction,high-resolution transmission electron microscopy,scanning electron microscopy and BET measurements.The research results show that the hollow Cu_(0.3)Co_(2.7)O_(4) microspheres consist of single-crystalline nanocubes with the diameter of about 20 nm.The formation mechanism of hollow Cu_(0.3)Co_(2.7)O_(4) microspheres is suggested as Ostwald ripening in a solid-solution-solid process,and Cu_(0.3)Co_(2.7)O_(4) microspheres are mesoporous containing two pore sizes of 3.3 and 5.9 nm.The as-prepared Cu_(0.3)Co_(2.7)O_(4) sensors have optimal gas responses to 50×10^(−6) mg/m^(3) C_(2)H_(5)OH at 190℃.
文摘Using ethylene glycol as solvent and reductant, CuCl2-2H2O, (NH2)2CS and self-prepared GaCl3 as the starting materials, CuGaS2 nanostrucutures were synthesized on a large scale at 220℃. Powder X-ray diffraction. transmission electron microscopy, field-emission scanning electron microscope, high-resolution transmission electron microscopy" and X-ray" photoelectron spectroscopy were used to characterize the products. It demonstrated the evolution of the CuGaS2 particles from spherical assemblies to flowerlike morphology, over time, at 220℃. Simultaneously, we elucidated the specific roles of reaction temperature, reaction time and solvent in the formation of the final CuGaS2 nanostructures. A possible formation mechanism of CuGaS2 nanostrucutures was also discussed. The room temperature photoluminescence spectrum showed blue-shift and an increase of intensity, with a decrease in the sizes of CuGaS2 particles.
文摘Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents.The synthesis was carried out through a simple and less expensive green method.The XRD result shows that both pure CdS and ZnS and their doped derivatives are of high crystalline with hexagonal packing structure.The average crystalline size of all nanoparticles was calculated using Debye-Scherrer formula.The crystalline size of nanoparticles of pure samples varied with that of the doped sample.The average crystalline sizes of all nanoparticles are found to be in the range of 5.5-2.2 nm for CdS(from pure to doped) and 4.3-3.4 nm for ZnS,respectively.The band gap values obtained from UV-visible spectra are in the range of 3.5-2.1 e V for CdS and 3.3-2.7 e V for ZnS derivatives,respectively.The FTIR spectral data give characteristic peaks for Cd—S,Cu—S,Ag—S and Zn—S bonds and confirm the formation of respective nanoparticles.The peaks corresponding to the microstructural formation are also observed.The FE-SEM images show the granular morphological structure for all the samples.The agglomeration size of the samples in the range of 10-50 nm for CdS:Cu and 50-100 nm for ZnS:Cu is observed.
基金supported by the National Natural Science Foundation of China(21773269,21761132025,91545119,21703262)the Youth Innovation Promotion Association CAS(2015152)+1 种基金the Joint Foundation of Liaoning Province Natural Science FoundationShenyang National Laboratory for Materials Science(20180510047)~~
文摘Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship.
基金Acknowledgements We gratefully acknowledge financial support from the Innovative and Entrepreneurial Talent Recruitment Program of Jiangsu Province, the National Natural Science Foundation of China (21405014, 21635001, 21627806 and 21501026), Key Research and Development Plan of Jiangsu Province BE2016002, the Project of Special Funds of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2015067), the 111 Project (B 17011, Ministry of Education of China), and the Natural Science Foundation of Jiangsu Province (B K20140626 and B K20140619). China Postdoctoral Science Foundation funded Project (2017M621597). The Fundamental Research Funds for the Central Universities (2242018R20011).
文摘Natural anisotropic nanostructures occurring in several organisms have gained more and more attention because of their obvious advantages in sensitivity, stability, security, miniaturization, portability, online use, and remote monitoring. Due to the development of research on nature-inspired bionic structures and the demand for highly efficient, low-cost microfabrication techniques, an understanding of and the ability to replicate the mechanism of structural coloration have become increasingly significant. These sophisticated structures have many unique functions and are used in many applications. Many sensors have been proposed based on their novel structures and unique optical properties. Several of these bio-inspired sensors have been used for infrared radiation/thermal, pH, and vapor techniques, among others, and have been discussed in detail, with an intense focus on several biomedical applications. However, many applications have yet to be discovered. In this review, we will describe these nanostructured materials based on their sources in nature and various structures, such as layered, hierarchical, and helical structures. In addition, we discuss the functions endowed by these structures, such as superhydrophobicity, adhesion, and high strength, enabling them to be employed in a number of applications in biomedical fields, including cell cultivation, biosensors, and tissue engineering.
基金Project(2020JJ2001)supported by Outstanding Youth Scientist Foundation of Hunan Province,ChinaProject(6142912200102)supported by Foundation for National Key Laboratory of Science and Technology on Highstrength Structural Materials,China。
文摘In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.
文摘The nano-size metal oxide was prepared by the single-disperse technique on liquid phase, and formed sol dusters, its uniform film was covered on the surface of cashmere fibers by coating, and it had good oil repellency and water repellency. The results of IR(infrared) Spectrometer analysis revealed: The nano material combines through the strong bonds with the surface of cashmere fibers by the live groups. These analyses by SEM techniques showed that the nano material was distributed on the fiber surface even, and the nano material formed the strong peak of the regular crystal phase structure using the X-Ray Diffractometry (XRD) to analysis the fabric. The optimum techniques were selected by a series of experiments, coated cashmere fabric not only has preserved original properties of softness and comfort, but also has good properties of Bi-repellency function. Therefore, the technique will have potential appfication in engineers.
基金council of University of Kashan for providing financial support to undertake this work by Grant No. 159271/368
文摘Mercury sulfide (HgS) crystals with different morphologies and particle sizes, were obtained via a simple microwave reaction by a new precursor complex, [bis ((2-suphanylphenyl)imino]methylphenol) Hg(II)] ([Hg(C13H11NSO)2]2+). The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV?Vis) spectroscopy. Mercury sulfide nanostructures with different sizes were prepared. The effects of precursor concentration, type of solvent, microwave time, and power on the particle size and morphology were investigated. The results show that the type of solvent and microwave power play key roles in the final size of HgS. Ethylene glycol is the best solvent for the synthesis of very fine particles of HgS, and the best power for the preparation of HgS nanoparticles with uniform size distribution is 900 W. The band gap for HgS nanoparticles calculated by UV–Vis spectrum was 3.2 eV which had about 1.2 eV blue shift in comparison with the band gap of 2 eV for bulk sample.
基金Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Fondo para la Investigación Científica y Técnológica (FONCy T), Argentina,for their financial support
文摘Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morphology, homogeneity and grain size of Cu?Ni nanoparticles were investigated. Both the parameters significantly affect the crystalline structure, composition and grain size. Cu?Ni alloys prepared at pH value of 1 do not contain impurities, and their compositions are Cu0.42Ni0.58, Cu0.45Ni0.55 and Cu0.52Ni0.48 reduced at 300, 400 and 500 °C, respectively. The grain size grows with the increase of calcination temperature for the precursor prepared at pH values of 1.6 and 3. The Ni content of the alloys gradually increases with the increase of calcination temperature at pH value of 3.
文摘Noble metal-reducible oxide interfaces have been regarded as one of the most active sites for water-gas shift reaction.However,the molecular reaction mechanism of water-gas shift reaction at these interfaces still remains unclear.Herein,water-gas shift reaction at Pt-NiO interfaces has been in-situ explored using surface-enhanced Raman spectroscopy by construction of Au@Pt@NiO nanostructures.Direct Raman spectroscopic evidence demonstrates that water-gas shift reaction at Pt-NiO interfaces proceeds via an associative mechanism with the carbonate species as a key intermediate.The carbonate species is generated through the reaction of adsorbed CO with gaseous water,and its decomposition is a slow step in water-gas shift reaction.Moreover,the Pt-NiO interfaces would promote the formation of this carbonate intermediate,thus leading to a higher activity compared with pure Pt.This spectral information deepens the fundamental understanding of the reaction mechanism of water-gas shift reaction,which would promote the design of more efficient catalysts.
基金Major Research Plan of NSFC on Nanomanufacturing(No.90923040)National Basic Research Program of China(No.2009CB724202)
文摘The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.
基金Fundamental Research Funds of Lanzhou University for the Central Universities (Grant No. lzujbky-2012-85)the Lanzhou Science and Technology Bureau (Grant No. 2012-2-80)
文摘Lipid nanoparticles have become attractive for its prominent properties recent years. In this paper, in vivo anti-tumor efficacy of nanostructured lipid carrier of dihydroartemisinin (DHA-NLC) were evaluated in sarcoma 180-bearing mice model through intraperitoneal (i.p.) administration. In vivo biodistribution was also investigated in Kunming mice bearing S180. Results demonstrated that the intraperitoneally injected DHA-NLC could significantly inhibit tumor growth at the dose levels of 20, 40 and 80 mg/kg, and their inhibition rates were 71.24%, 79.20% and 85.74%, respectively. The biodistribution of DHA after intraperitoneal injection of DHA-NLC in S180-bearing mice is remarkably different from the DHA solution. Therefore, DHA encapsulated in NLC does demonstrate superior anticancer effect to DHA suspension on S 180-bearing mice at the same dose and displayed a dose-dependent antitumor efficacy.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB933401 and 2012CB934003)the National Natural Science Foundation of China(Grant No.31070854)National Major Scientific Instruments Development Project(Grant No.2011YQ03013406)
文摘Au nanoparticles have been used in biomedical applications since ancient times. However, the rapid development of nanotechnology over the past century has led to recognition of the great potential of Au nanoparticles in a wide range of applications. Advanced fabrication techniques allow us to synthesize a variety of Au nanostructures possessing physiochemical properties that can be exploited for different purposes. Functionalization of the surface of Au nanoparticles further eases their application in various roles. These advantages of Au nanoparticles make them particularly suited for cancer treatment and diagnosis. The small size of Au particles enables them to preferentially accumulate at tumor sites to achieve in vivo targeting after systemic administration. Efficient light absorption followed by rapid heat conversion makes them very promising in photothermal therapy. The facile surface chemistry of Au nanoparticles eases delivery of drugs, ligands or imaging contrast agents in vivo. In this review, we summarize recent development of Au nanoparticles in cancer theranostics including imaging-based detection, photothermal therapy, chemical therapy and drug delivery. The multifunctional nature of Au nanoparticles means they hold great promise as novel anti-cancer therapeutics.
基金supported by the National Institute of Food and Agriculture,USDA and AU-IGP award
文摘Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mechanical stability, light weight, low cost and ease in material processing. Compared with bulk CPs, nanostructured CPs possess higher electrical conductivity, larger surface area, superior electro- chemical activity, which make them suitable for various ap- plications. Hybridization of CPs with other nanomaterials has obtained promising functional nanocomposites and achieved improved performance in different areas, such as energy sto- rage, sensors, energy harvesting and protection applications. In this review, recent progress on nanostructured CPs and their composites is summarized from research all over the world in more than 400 references, especially from the last three years. The relevant synthesizing experiences are outlined and abundant application examples are illustrated. The ap- proaches of production of nanostructured CPs are discussed and the efficacy and benefits of newest trends for the pre- paration of multifunctional nanomaterials/nanocomposites are presented. Mechanism of their electrical conductivity and the ways to tailor their properties are investigated. The re- maining challenges in developing better CPs based nanoma- terials are also elaborated.
基金the National Key R&D Program of China(2016YFA0202602)the National Natural Science Foundation of China(U1663225)+3 种基金the Fundamental Research Funds for the Central Universities(2020-YB-009)the Academy of Scientific Research and Technology(6611,ASRT,Egypt)the 111 National project(B20002)from the Ministry of Science and Technology and the Ministry of Education,ChinaSinopec Ministry of Science and Technology Basic Prospective Research Project(217027-5 and 218025-9)。
文摘Lithium-sulfur(Li-S)batteries have attracted significant attention for their high specific capacity,non-toxic and harmless advantages.However,the shuttle effect limits their development.In this work,small-sized tin disulfide(SnS_(2))nanoparticles are embedded between interlayers of twodimensional porous carbon nanosheets(PCNs),forming a multi-functional nanocomposite(PCN-SnS_(2))as a cathode carrier for Li-S batteries.The graphitized carbon nanosheets improve the overall conductivity of the electrode,and the abundant pores not only facilitate ion transfer and electrolyte permeation,but also buffer the volume change during the charge and discharge process to ensure the integrity of the electrode material.More importantly,the physical confinement of PCN,as well as the strong chemical adsorption and catalytic reaction of small SnS_(2)nanoparticles,synergistically reduce the shuttle effect of polysulfides.The interaction between a porous layered structure and physical-chemical confinement gives the PCN-SnS_(2)-S electrode high electrochemical performance.Even at a high rate of 2 C,a discharge capacity of 650 mA h g^(-1)is maintained after 150 cycles,underscoring the positive results of SnS_(2)-based materials for Li-S batteries.The galvanostatic intermittent titration technique results further confirm that the PCN-SnS_(2)-S electrode has a high Li+transmission rate,which reduces the activation barrier and improves the electrochemical reaction kinetics.This work provides strong evidence that reducing the size of SnS_(2)nanostructures is beneficial for capturing and reacting with polysulfides to alleviate their shuttle effect in Li-S batteries.
基金supported by the National Heart Lung and Blood Institute of the National Institutes of Health(NIH) as a Program of Excellence in Nanotechnology Award(Grant No.HHSN268201000043C to Bao Gang)an NIH Nanomedicine Development Center Award(Grant No.PN2 EY018244 to Bao Gang)
文摘Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarders and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic im- provements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of func- tional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carders for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imag- ing probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nano- medicine approaches to clinical applications are discussed.